Maynard, Lauren Danielle2022-12-212022-12-212022-12-20vt_gsexam:35613http://hdl.handle.net/10919/112961Interactions are important drivers of selection and community structure, which makes the study of multi-species interactions critical for understanding the ecology and evolution of organisms. This dissertation includes four data chapters that examine the biotic and abiotic mechanisms that shape multi-species interactions in both tropical and temperate ecosystems. The first three data chapters (Chapters 2–4) were completed within a Neotropical rainforest in Costa Rica and focus on one plant genus, Piper (Piperaceae). The final data chapter (Chapter 5) was conducted within a working landscape of soybean (Glycine max) fields in eastern Maryland, USA. In Chapter 2, I explore intra- and inter-specific dietary niche partitioning of Piper fruits among three frugivorous bats, illustrating the importance of fine-scale mechanisms that facilitate species coexistence and influence plant–animal interactions. In Chapter 3, I demonstrate how the chemical ecology of a Neotropical shrub, Piper sancti-felicis, shapes fruit interactions with antagonists (fruit fungi) and mutualists (frugivorous bats and birds), developing a foundation for understanding evolutionary ecology of plant chemical traits based on phytochemical investment patterns. In Chapter 4, I describe the direct and indirect impacts of elevated temperature and CO2 concentration on the plant traits and interactions in Piper generalense, improving our understanding of the effects of climate change on a Neotropical plant–herbivore system. In Chapter 5, I explore the biotic (herbivore-induced plant volatiles) and abiotic (fine-scale weather conditions) drivers affecting insectivorous bat foraging in soybean fields in eastern Maryland, providing a pathway to further investigate new strategies for integrated pest management. As a collective work, this dissertation disentangles the nuances of multi-species interactions, exploring foundational mechanisms underlying biodiversity maintenance as well as answering applied questions to address a changing climate and aid sustainable agriculture.ETDenIn Copyrightchemical ecologyspecies interactionstemperate agroecosystemtropical rainforestBiotic and abiotic mechanisms shaping multi-species interactionsDissertation