Karwande, Gaurang Ajit2023-06-072023-06-072023-06-06vt_gsexam:37300http://hdl.handle.net/10919/115361This thesis explores the application of Graph Neural Networks (GNNs), a subset of Geometric Deep Learning methods, for medical image analysis and causal structure learning. Tracking the progression of pathologies in chest radiography poses several challenges in anatomical motion estimation and image registration as this task requires spatially aligning the sequential X-rays and modelling temporal dynamics in change detection. The first part of this thesis proposes a novel approach for change detection in sequential Chest X-ray (CXR) scans using GNNs. The proposed model CheXRelNet utilizes local and global information in CXRs by incorporating intra-image and inter-image anatomical information and showcases an increased downstream performance for predicting the change direction for a pair of CXRs. The second part of the thesis focuses on using GNNs for causal structure learning. The proposed method introduces the concept of intervention on graphs and attempts to relate belief propagation in Bayesian Networks (BN) to message passing in GNNs. Specifically, the proposed method leverages the downstream prediction accuracy of a GNN-based model to infer the correctness of Directed Acyclic Graph (DAG) structures given observational data. Our experimental results do not reveal any correlation between the downstream prediction accuracy of GNNs and structural correctness and hence indicate the harms of directly relating message passing in GNNs to belief propagation in BNs. Overall, this thesis demonstrates the potential of GNNs in medical image analysis and highlights the challenges and limitations of applying GNNs to causal structure learning.ETDenCreative Commons Attribution 4.0 InternationalGraph Neural NetworksMedical ImagingCausal Structure LearningBayesian NetworksGeometric Deep Learning for Healthcare ApplicationsThesis