Bhargava, Aarushi2020-05-072020-05-072020-05-06vt_gsexam:25117http://hdl.handle.net/10919/97994Smart materials are intelligent materials that change their structural, chemical, mechanical, or thermal properties in response to an external stimulus such as heat, light, and magnetic and electric fields. With the increase in usage of smart materials in many sensitive applications, the need for a remote, wireless, efficient, and biologically safe stimulus has become crucial. This dissertation addresses this requirement by using high intensity focused ultrasound (HIFU) as the external trigger. HIFU has a unique capability of maintaining both spatial and temporal control and propagating over long distances with reduced losses, to achieve the desired response of the smart material. Two categories of smart materials are investigated in this research; shape memory polymers (SMPs) and piezoelectric materials. SMPs have the ability to store a temporary shape and returning to their permanent or original shape when subjected to an external trigger. On the other hand, piezoelectric materials have the ability to convert mechanical energy to electrical energy and vice versa. Due to these extraordinary properties, these materials are being used in several industries including biomedical, robotic, noise-control, and aerospace. This work introduces two novel concepts: First, HIFU actuation of SMP-based drug delivery capsules as an alternative way of achieving controlled drug delivery. This concept exploits the pre-determined shape changing capabilities of SMPs under localized HIFU exposure to achieve the desired drug delivery rate. Second, solving the existing challenge of low efficiency by focusing the acoustic energy on piezoelectric receivers to transfer power wirelessly. The fundamental physics underlying these two concepts is explored by developing comprehensive mathematical models that provide an in-depth analysis of individual parameters affecting the HIFU-smart material systems, for the first time in literature. Many physical factors such as acoustic, material and dynamical nonlinearities, acoustic standing waves, and mechanical behavior of materials are explored to increase the developed models' accuracy. These mathematical frameworks are designed with the aim of serving as a basic groundwork for building more complex smart material-based systems under HIFU exposure.ETDIn Copyrighthigh intensity focused ultrasoundshape memory polymerspiezoelectricsmart materialsacoustic nonlinearitynonlinear dynamicscontrolled drug deliveryultrasound power transferDynamics of smart materials in high intensity focused ultrasound fieldDissertation