Bishnoi, Hemant2013-11-062013-11-062013-11-05vt_gsexam:1584http://hdl.handle.net/10919/23936Measurement-based behavioral electromagnetic interference (EMI) models have been shown earlier to accurately capture the EMI behavior of switched power converters. These models are compact, linear, and run in frequency domain, enabling faster and more stable simulations compared to the detailed lumped circuit models. So far, the behavioral EMI modeling techniques are developed and applied to the converter's input side only. The resulting models are therefore referred to as "terminated EMI models". Under the condition that the output side of the converter remains fixed, these models can predict the input side EMI for any change in the impedance of the input side network. However, any change at the output side would require re-extraction of the behavioral model. Thus the terminated EMI models are incapable of predicting the change in the input side EMI due to changes at the output side of the converter or vice versa. The above mentioned limitation has been overcome by an "un-terminated EMI model" proposed in this dissertation. Un-terminated EMI models are developed here to predict both the common-mode (CM) and the differential (DM) noise currents at the input and the output sides of a motor-drive system. The modeling procedure itself has been simplified and now requires fewer measurements and results in less noise in the identified model parameters. Both CM and DM models are then combined to predict the total noise in the motor drive system. All models are validated by experiments and their limitations identified. A significant portion of this dissertation is then devoted to the application of behavioral EMI models in the design of EMI filters. Comprehensive design procedures are developed for both DM and CM filters in a motor-drive system. The filters designed using the proposed methods are experimentally shown to satisfy the DO-160 conducted emissions standards. The dissertation ends with a summary of contributions, limitations, and some future research directions.ETDIn Copyrightconducted emissionsmotor-drivesEMCbehavioral modelEMI filtersBehavioral EMI-Models of Switched Power ConvertersDissertation