Modi, Parthkumar Ashishbhai2021-12-022021-12-022020-06-09vt_gsexam:26305http://hdl.handle.net/10919/106807A mesoscale evaluation is performed to determine the impacts of climate change on terrestrial hydrological components and the Net Irrigation Water Requirement (NIWR) throughout the Chesapeake Bay watershed in the mid-Atlantic region of the United States. The Noah-MP land surface model is calibrated and evaluated against the observed datasets of United States Geological Survey (USGS) streamflow gages, actual evapotranspiration from USGS Simplified Surface Energy Balance (SSEBop) Model and soil moisture from Soil Analysis Climate Network (SCAN). Six best performing Global Climate Models (GCM) based on Multivariate Adaptive Constructed Analogs (MACA) scheme are included for two future scenarios (RCP 4.5 and RCP 8.5), to assess the change in water balance components, change in NIWR for two dominant crops (corn and soybeans) and uncertainty in GCM projections. Using these long-term simulations, the flood inundation maps are developed for future scenarios along the Susquehanna River including the City of Harrisburg in Pennsylvania. The HEC-RAS 2D model is calibrated and evaluated against the high-water marks from major historical flood events and the stage-discharge relationship of the available USGS streamgages. Finally, the impacts of climate change are assessed on flood inundation depth and extent by comparing a 30-yr and 100-yr flood event based on the historical and future (scenario-based) peak discharge estimates at the USGS streamgages. Interestingly, flood inundation extent and severity predicted by the model along the Susquehanna River near Harrisburg is expected to rise in the future climate scenarios due to the greater frequency of extreme events increasing total precipitation.ETDIn CopyrightLand surface modelingNoah-MPGlobal Climate ModelsNet Irrigation Water Requirementflood inundationHEC-RASEvaluating Changes in Terrestrial Hydrological Components Due to Climate Change in the Chesapeake Bay WatershedThesis