Pan, YananJi, BinZhang, WencaiKnott, KennethXia, YangLi, QiRena, Bhavin2025-01-232025-01-232024-111226-086Xhttps://hdl.handle.net/10919/124323Recovering lithium from wastewater generated during shale gas operations is essential for promoting sustainable resource utilization and safeguarding the environment. This study aimed to develop a lithium adsorbent by modifying lithium-aluminum layered double hydroxide (Li/Al-LDH) using varying concentrations of polyethylene glycol (PEG) of two distinct molecular weights. Remarkably, the application of a 10 % solution of PEG400 at 293 K and a liquid-to-solid ratio of 20 mL/g yielded a substantial enhancement in the lithium adsorption capacity, increasing from 2.50 mg/g to 3.61 mg/g. Characterization studies revealed positive alterations in the physicochemical attributes of Li/Al-LDH after the integration of PEG long chains, particularly in its surface and structural properties. Moreover, DFT calculations demonstrated an increase in Li+ binding energy from −1.05 eV to −3.24 eV. The lithium adsorption process in produced water using the modified material reached equilibrium within 15 min through a spontaneous chemical reaction. Its capability to release Li+ under neutral conditions offers an environmentally friendly advantage. With a stable cyclic adsorption capacity of around 4.00 mg/g over eight rounds, the material demonstrated remarkable recyclability. This research presents a pioneering advanced lithium adsorbent for the sustainable extraction of lithium from shale gas produced water, thereby advancing the new energy sector.application/pdfenIn CopyrightTopography and structural regulation-induced enhanced recovery of lithium from shale gas produced water via polyethylene glycol functionalized layered double hydroxideArticle - RefereedJournal of Industrial and Engineering Chemistryhttps://doi.org/10.1016/j.jiec.2024.10.032Zhang, Wencai [0000-0001-8568-5309]