Wang, Qichao2020-12-202020-12-202019-06-28vt_gsexam:21287http://hdl.handle.net/10919/101552This dissertation aims to reduce urban traffic congestion with street traffic signal control. The traffic signal controllers in the U.S. follow the National Electrical Manufacturing Association Standards (NEMA Standards). In a NEMA controller, the control parameters for a coordinated control are cycle, green splits, and offset. This dissertation proposed a virtual phase-link concept and developed a macroscopic model to describe the dynamics of a traffic network. The coordinated optimal splits control problem was solved using model predictive control. The outputs of the solution are the green splits that can be used in NEMA controllers. I compared the proposed method with a state-of-the-practice signal timing software under coordinated-actuated control settings. It was found that the proposed method significantly outperformed the benchmarking method. I compared the proposed NEMA-based virtual phase-link model and a Max Pressure controller model using Vissim. It was found that the virtual phase-link method outperformed two control strategies and performed close, but not as good as, the Max Pressure control strategy. The disadvantage of the virtual phase-link method stemmed from the waste of green time during a fixed control cycle length and the delay which comes from the slowing down of platoon during a road link to allow vehicles to switch lanes. Compared to the Max Pressure control strategy, the virtual phase-link method can be implemented by any traffic controller that follows the NEMA standards. The real-time requirement of the virtual phase-link method is not as strict as the Max Pressure control strategy. I introduced the offsets optimization into the virtual phase-link method. I modeled the traffic arrival pattern based on the optimization results from the virtual phase-link control method. I then derived a phase delay function based on the traffic arrival pattern. The phase delay function is a function of the offset between two consecutive intersections. This phase delay function was then used for offsets optimization along an arterial. I tested the offsets optimization method against a base case using microscopic simulations. It was found that the proposed offset optimization method can significantly reduce vehicle delays.ETDIn CopyrightTraffic ControlModel Predictive ControlVirtual Phase-LinkStreet Traffic Signal Optimal Control for NEMA ControllersDissertation