Sridhar, VenkataramanaAli, Syed AzharSample, David J.2021-09-272021-09-272021-09-12Sridhar, V.; Ali, S.A.; Sample, D.J. Systems Analysis of Coupled Natural and Human Processes in the Mekong River Basin. Hydrology 2021, 8, 140.http://hdl.handle.net/10919/105066The Mekong River Basin is one of the world’s major transboundary basins. The hydrology, agriculture, ecology, and other watershed functions are constantly changing as a result of a variety of human activities carried out inside and by neighboring countries including China, Myanmar, Thailand, Laos, Cambodia, and Vietnam in order to meet increased food and water demands for an increasing population. The Mekong River, which provides irrigation and fishing for a population of over 60 million people, also has an estimated 88,000 MW of untapped hydropower potential. The construction of dams for energy supply has a wide-ranging impact on downstream reservoir regions, resulting in unprecedented changes in hydrologic functions, the environment, and people’s livelihoods. We present a holistic view of how external stressors such as climate change and variability, land cover, and land-use change affect supply and demand. We present an integrated modeling framework for analyzing the supply–demand scenarios and tradeoffs between different sectors. Specifically, we evaluated the impacts of future climate on irrigation, hydropower, and other needs in the basin through a feedback loop. We focused on hydrologic extremes to evaluate their impacts on the reservoir operations during flood and low flow events. The inflow is projected to change by +13% to −50% in the future, while a 0.25% (15.24 billion m<sup>3</sup>) reduction is projected for the net irrigation water requirement (NIWR). A unit percentage increase in irrigation demand will reduce energy generation by 0.15%, but climate change has a beneficial impact on dam performance with a predicted increase in energy generation and supply to all sectors. Flood events will cause excessive stress on reservoir operation to handle up to six times more flow volumes; however, the low-flow events will marginally affect the system. While the flow and storage rule curves consider both supply and demand, changing human water use comes second to changing climate or other biophysical considerations. This paper emphasizes the importance of considering feedback between climate–water–human society in the systems modeling framework in order to meet societal and ecological challenges. The findings will provide information on the risks and tradeoffs that exist in the water, energy, and food sectors of the basin.application/pdfenCreative Commons Attribution 4.0 Internationalhydrologysystems modelinganthropogenic impactsMekong River BasinSystems Analysis of Coupled Natural and Human Processes in the Mekong River BasinArticle - Refereed2021-09-25Hydrologyhttps://doi.org/10.3390/hydrology8030140