Bass, Roger Thompson II2014-03-142014-03-141999-04-21etd-071699-113207http://hdl.handle.net/10919/28313The effects of vitamin E supplementation during late gestation were evaluated in dairy or beef cattle in three experiments. Dairy cows were injected with vitamin E and selenium (Se) in one study; beef cows were offered oral vitamin E supplementation via a free-choice vitamin-mineral mix in two studies. Breed-related effects were also evaluated. Jerseys had higher blood Se and lower serum vitamin E concentrations than Holsteins at dry-off and higher blood Se concentrations than Holsteins 3-4 weeks pre-calving and at calving. Selenium supplementation increased blood Se concentrations at calving. Treatment did not affect serum vitamin E concentrations at calving or post-calving, nor blood Se concentrations post-calving. Beef cattle consuming supplemental vitamin E (treatment) had greater responses to treatment when calving in late winter than when calving in late summer. Treated multiparous cows calving in winter had increased serum and colostral vitamin E concentrations but treatment did not affect colostral or serum immunoglobulin G (IgG) concentrations of their calves. Calves from treated, multiparous cows calving in winter had increased 205-day adjusted weaning weights (AWWs). Treatment did not affect colostral vitamin E or IgG concentrations of nulliparous heifers calving in winter, nor serum vitamin E or IgG concentrations, or AWWs of their calves. Six hundred IU supplemental vitamin E/head/day did not affect serum vitamin E concentrations of dams, colostral vitamin E or IgG concentrations, serum vitamin E or IgG concentrations, or growth of calves in the summer-calving herd. Breed-related differences in vitamin E concentrations and AWW occurred in both herds. Consumption of 600-1000 IU vitamin E/cow/day (treatment) during late gestation via a free-choice vitamin-mineral mix increased vitamin E concentrations in serum and the lipoprotein fraction containing no apolipoprotein B (non-ApoB) from 1-2 weeks pre-calving to calving. Treatment group calves had higher vitamin E concentrations in serum and non-ApoB than control group calves. Treatment did not affect cholesterol or phospholipid concentrations in serum or the lipoprotein fractions of either cows or calves. Treatment increased vitamin E cholesterol (VEC) and vitamin E phospholipid (VEPL) ratios in the serum and non-ApoB of cows and calves. Various breed-related differences also occurred.In CopyrightLipoproteinSupplementationVitamin ECattleEffects of Vitamin E Supplementation in Late Gestation Cattle and Evaluation of Vitamin E, Cholesterol, and Phospholipid Relationships in Bovine Serum and Serum LipoproteinsDissertationhttp://scholar.lib.vt.edu/theses/available/etd-071699-113207/