Orloff, Mark Andrew2023-03-102023-03-102021-09-15vt_gsexam:32603http://hdl.handle.net/10919/114066Risky decision-making and social influence are associated with many health-risk behaviors. However, more work is necessary to understand risky decision-making and social influence. Additionally, to begin identifying ways to change individuals' engagement in health-risk behaviors, more work is necessary to understand whether and how risky decision-making and social influence can be modulated. Using computational modeling in conjunction with other techniques, this dissertation 1) explores mechanisms underlying risky decision-making under social influence (Study 1) and 2) examines how individuals could modulate risky decision-making and social influence (Studies 2 and 3). Study 1 identifies a novel social heuristic decision-making process whereby individuals who are more uncertain about risky decisions follow others and proposes dorsolateral prefrontal cortex (dlPFC) as a 'controller' of this heuristic. Study 2 finds that giving individuals agency in viewing social information increases the utility of that information. Study 3 finds that some individuals can modulate brain patterns associated with risky decision-making using a real-time fMRI (rt-fMRI) neurofeedback paradigm, and preliminarily shows that this leads to behavior change in risky decision-making. In sum, these studies expand on previous work elucidating mechanisms of risky decision-making under social influence and suggest two possible avenues (agency and real-time fMRI neurofeedback) by which individuals can be taught to change their behavior when making risky decisions under social influence.ETDapplication/pdfenIn Copyrightrisky decision-makingsocial influencehealth-risk behaviorscomputational modelingfunctional magnetic resonance imaginglesionRisky Decision-Making Under Social InfluenceDissertation