Neigh, Thomas Alexander2024-05-242024-05-242024-05-14vt_gsexam:40408https://hdl.handle.net/10919/119073Recent work in the area of composite laminates has focused on the characterization of the strength of laminates constructed from very thin plies. Interlaminar shear and normal stress components have been shown to be concentrated on the edges, the so-called edge effect, of unidirectional laminates at the interface between plies of different fiber orientation. Research has shown that decreasing ply thickness can reduce these interlaminar stress edge effects, and delay delamination in quasi-isotropic laminate specimen for laminates of equal total thickness. First ply failure stress has also been shown to increase with decreasing ply thickness. For these reasons, there has been a great deal of interest in laminated composites constructed from very thin plies. This work studies the impact of manufacturing tolerances on ply orientation on the mechanical properties of the constructed laminate. Direct Monte Carlo simulation is used to model the variance introduced in the manufacturing process. First-order variance-based sensitivity analysis using a local analysis of variance technique is used to study the contribution of each individual ply to the variation in as built mechanical properties. Variation in mechanical properties of thick-ply and thin-ply laminate designs are compared to study if thin-ply laminate designs show more or less variation than their thick-ply counterparts. This work has found potential impacts of ply angle variation on variance of as-built stiffness in laminates of different ply thicknesses. These differences are attributable to the total ply count in a laminate. For a fixed height laminate, the ply count is inversely proportional to thickness, yielding the apparent benefit of thin plies. Using thinner plies in a sub-laminar stacking arrangement, repeating a sublaminate instead of repeating plies, reduces sensitivity to manufacturing errors and would suppress tranverse failure modes.ETDenIn CopyrightCompositesSensitivity AnalysisLocal and Global Sensitivity Analysis of Thin Ply Laminated Carbon CompositesThesis