Ye, Yuxian2019-06-152019-06-152019-06-14vt_gsexam:20047http://hdl.handle.net/10919/90184Dynamic Spectrum Access (DSA) is now a commonly used spectrum sharing paradigm to mitigate the spectrum shortage problem. DSA technology allows unlicensed secondary users to access the unused frequency bands without interfering with the incumbent users. The key technical challenges in DSA systems lie in spectrum allocation problems and spectrum user's security issues. This thesis mainly focuses on spectrum monitoring technology in spectrum allocation and incumbent users' (IU) privacy issue. Spectrum monitoring is a powerful tool in DSA to help commercial users to access the unused bands. We proposed a crowdsourcing-based unknown IU pattern monitoring scheme that leverages the power of masses of portable mobile devices to reduce the cost of the spectrum monitoring and demonstrate the ability of our system to capture not only the existing spectrum access patterns but also the unknown patterns where no historical spectrum information exist. Due to the energy limit of the battery-based system, we then leverage solar energy harvesting and develop an energy management scheme to support our spectrum monitoring system. We also provide best privacy-protection strategies for both static and mobile IUs in terms of hiding their true location under the detection of Environmental Sensing Capabilities system. In this thesis, the heuristic approach for our mathematical formulations and simulation results are described in detail. The simulation results show our spectrum monitoring system can obtain a high spectrum monitoring coverage and low energy consumption. Our IU privacy scheme provides great protection for IU's location privacy.ETDIn CopyrightDynamic Spectrum AccessSpectrum monitoringEnergy harvestingEnergy managementSpectrum users' location privacy preservingStudy of Sensing Issues in Dynamic Spectrum AccessThesis