Sullivan, Patrick Ryan2019-10-302019-10-302019-10-29vt_gsexam:22779http://hdl.handle.net/10919/95207Depression is a crippling burden on a great many people, and it is often well hidden. Mental health professionals are able to treat depression, but the general public is not well versed in recognizing depression symptoms or assessing their own mental health. Active Listening Journal Interaction (ALJI) is a computer program that seeks to identify and refer people suffering with depression to mental health support services. It does this through analyzing personal journal entries using machine learning, and then privately responding to the author with proper guidance. In this thesis, we focus on determining the feasibility and usefulness of the machine learning models that drive ALJI. With heavy data limitations, we cautiously report that with a single journal entry, our model detects when a person's symptoms warrant professional intervention with a 61% accuracy. A great amount of discussion on the proposed solution, methods, results, and future directions of ALJI is included.ETDIn CopyrightMachine learningExpressive WritingComputational Social ScienceALJI: Active Listening Journal InteractionThesis