Choi, Andrew C.2023-07-042023-07-042023-07-03vt_gsexam:37897http://hdl.handle.net/10919/115632Electric transmission lines suffer from many hazards, including wind-induced vibrations (WIV), which can lead to fatigue failure of the transmission conductors. Current vibration mitigation methods do not adequately address WIV because they overwhelmingly rely on narrow-band fixed absorbers. A mobile damping robot (MDR) can overcome the limitations of these fixed absorbers by actively transporting them to locations of highest amplitude on the cable; i.e., antinodes. These antinodes are where the absorbers can most efficiently remove energy from the system. While analyses have been performed for vibration absorbers on transmission line conductors, they have not been in the context of a mobile damping robot (MDR). There is a need to investigate the potential impact of the MDR on a transmission line and the resulting implications for the MDR's development. In this thesis, we explore the dynamics of a power line conductor through finite element analysis (FEA) and modal testing. We perform numerical analysis in MATLAB using equations of motion obtained via Hamilton's Principle. We discuss the design and validation of an appropriate test bench and MDR prototype. We also experimentally investigate the ability of the MDR prototype to transport a mass along a conductor to antinode locations. Experimental results indicate that the damping robot is indeed able to navigate to cable locations of highest amplitude corresponding to antinodes. We then conclude and discuss future work. The insights gained from this research lay a foundation to guide further development of the MDR. Through this work, we are better able to define the operating conditions of the MDR, which will facilitate the creation of a more robust, adaptable control framework for expanded capability.ETDenIn Copyrightvibrationvibration controlmobile robotsInvestigation of a Mobile Damping Robot for Electric Transmission LinesThesis