Jain, Sparsh2021-06-102021-06-102021-06-01http://hdl.handle.net/10919/103752Intracranial electroencephalography (iEEG) provides superior diagnostic and research benefits over non-invasive EEG in terms of spatial resolution and the level of electrophysiological detail. Post-operative Computed Tomography (CT) scans provide the precision in electrode localization required for clinical purposes; however, to use this data for basic sleep research the challenge lies in identifying the precise locations of the implanted electrodes’ recording sites in terms of neuroanatomical regions as well as reliable scoring of their sleep data without the aid of facial electrodes. While existing methods can be combined to determine their exact locations in three-dimensional space, they fail to identify the functionally relevant gray matter areas that lie closest to them, especially if the points lie in the white matter. We introduce an iterative sphere inflation algorithm in conjunction with a unified pipeline to detect the exact as well as nearest regions of interest for these recording sites. Next, for sleep scoring purposes, we establish differences observed in alpha band activity between wakefulness and rapid eye movement (REM) sleep in frontal and temporal regions of iEEG patients. Lastly, we implement an automated sleep scoring method relying on the variations in alpha and delta bands power during sleep which can be applied to large sets of iEEG data recorded without accompanying electrooculogram (EOG) and electromyogram (EMG) electrodes available across labs for use in studies pertaining to neural dynamics during sleep.ETDapplication/pdfen-USAttribution-NonCommercial-NoDerivatives 4.0 InternationalSleep stagingelectrode localizationelectrophysiologyoscillationsiEEGalpha activityInvestigation of Sleep Neural Dynamics in Intracranial EEG PatientsThesis