Virginia TechBesieris, Ioannis M.Stasiak, W. B.Tappert, F. D.2014-04-092014-04-091978-02-01Besieris, I. M.; Stasiak, W. B.; Tappert, F. D., "A kinetic formulation of 3-dimensional quantum mechanical harmonic-oscillator under a random perturbation," J. Math. Phys. 19, 359 (1978); http://dx.doi.org/10.1063/1.5236790022-2488http://hdl.handle.net/10919/47054The behavior of a three_dimensional, nonrelativistic, quantum mechanical harmonic oscillator is investigated under the influence of three distinct types of randomly fluctuating potential fields. Specifically, kinetic (or transport) equations are derived for the corresponding stochastic Wigner equation (the exact equation of evolution of the phase_space Wigner distribution density function) and the stochastic Liouville equation (correspondence limit approximation) using two closely related statistical techniques, the first_order smoothing and the long_time Markovian approximations. Several physically important averaged observables are calculated in special cases. In the absence of a deterministic inhomogeneous potential field (randomly perturbed, freely propagating particle), the results reduce to those reported previously by Besieris and Tappert.application/pdfenIn CopyrightMechanical oscillatorsOscillatorsQuantum fluctuationsA Kinetic Formulation Of 3-Dimensional Quantum Mechanical Harmonic-Oscillator Under A Random PerturbationArticle - Refereedhttp://scitation.aip.org/content/aip/journal/jmp/19/2/10.1063/1.523679Journal of Mathematical Physicshttps://doi.org/10.1063/1.523679