Robinson, Sam Leslie2017-03-102017-03-101986http://hdl.handle.net/10919/76489We study the ħ→0 limit of the quantum dynamics determined by the Hamiltonian H(ħ) = -(ħ²/2m)Δ + V on L²(ℝ<sup>n</sup>) for a large class of potentials. By convolving with certain Gaussian states we obtain classically determined asymptotic behavior of the quantum evolution of states of compact support. For suitable potentials we obtain the analogus result for the scattering operator in the position representation. For initial or incoming states of class C<sub>o</sub>¹ the error terms are shown to have L² norms of order ħ<sup>½-ε</sup> for arbitrarily small positive ε.v, 69 leavesapplication/pdfen-USIn CopyrightLD5655.V856 1986.R624Quantum theoryScattering (Mathematics)The semiclassical limit of quantum dynamicsDissertation