Hu, Ye2022-10-252022-10-252021-09-01vt_gsexam:32291http://hdl.handle.net/10919/112265Emerging integrated satellite-drone-terrestrial communication (ISDTC) technologies are expected to contribute to our life by bringing forth high speed wireless connectivity to every corner of the world. On the one hand, the Internet of Things (IoT) provides connectivity to various physical objects by enabling them to share information and to coordinate decisions. On the other hand, the non-terrestrial components of an ISDTC system, i.e. unmanned aerial vehicles (UAVs), and satellites, can boost the capacity of wireless networks by providing services to hotspots, disaster affected, and rural areas. Despite the several benefits and practical applications of ISDTC technologies, one must address many technical challenges such as, resource management, trajectory design, device cooperation, data routing, and security. The key goal of this dissertation is to develop analytical foundations for the optimization of ISDTC operations, and the deployment of non-terrestrial networks (NTNs). First, the problem of resource management within ISDTC systems is investigated for service-effective cooperation among the terrestrial networks and NTNs. The performance of a multi-layer ISDTC system is analyzed within a competitive market setting.Using a novel decentralized algorithm, spectrum resources are allocated to each one of the communication links, considering the fairness among devices. The proposed algorithm is proved to reach a Walrasian equilibrium, at which the sum-rate of the network is maximized. The results also show that the proposed algorithm can reach the equilibrium with a practical convergence speed. Then, the effective deployment of NTNs under environmental dynamics is investigated using machine learning solutions with meta training capabilities. First, the use of satellites for on-demand coverage to unforeseeable radio access needs is investigated using game theory. The optimal data routing strategies are learned by the satellite system, using a novel reinforcement learning approach with distribution-robust meta training capability. The results show that, the proposed meta training mechanism significantly reduces the learning cost on the satellites, and is guaranteed to reach the maximal service coverage in the system. Next, the problem of control of UAV-carried radio access points under energy constraints is studied. In particular, novel frameworks are proposed to design trajectories for UAVs that seek to deliver data service to distributed, dynamic, and unforeseeable wireless access requests. The results show that the proposed approaches are guaranteed to converge to an optimal trajectory, and can get a faster convergence speed and lower computation cost using decomposition, cross validation and meta learning. Finally, this dissertation looks at the security of an IoT system. In particular, the impact of human intervention on the system security is analyzed under specific resource constraints. Psychological game theory frameworks are proposed to analyze the human psychology and its impact on the security of the system. The results show that the proposed solution can help the defender optimize its connectivity within the IoT system by estimating the attacker's behavior. In summary, the outcomes of this dissertation provide key guidelines for the effective deployment of ISDTC systems.ETDIn CopyrightGame theoryMachine LearningMeta learningPerformance OptimizationResource allocationUnmanned Aerial Vehicle CommunicationsSatellite communicationGame Theory and Meta Learning for Optimization of Integrated Satellite-Drone-Terrestrial-Communication SystemsDissertation