Shiraz, Ashton K.Panther, Eric J.Reilly, Christopher M.2022-01-112022-01-112022-01-05Shiraz, A.K.; Panther, E.J.; Reilly, C.M. Altered Germinal-Center Metabolism in B Cells in Autoimmunity. Metabolites 2022, 12, 40.http://hdl.handle.net/10919/107535B lymphocytes play an important role in the pathophysiology of many autoimmune disorders by producing autoantibodies, secreting cytokines, and presenting antigens. B cells undergo extreme physiological changes as they develop and differentiate. Aberrant function in tolerogenic checkpoints and the metabolic state of B cells might be the contributing factors to the dysfunctionality of autoimmune B cells. Understanding B-cell metabolism in autoimmunity is important as it can give rise to new treatments. Recent investigations have revealed that alterations in metabolism occur in the activation of B cells. Several reports have suggested that germinal center (GC) B cells of individuals with systemic lupus erythematosus (SLE) have altered metabolic function. GCs are unique microenvironments in which the delicate and complex process of B-cell affinity maturation occurs through somatic hypermutation (SHM) and class switching recombination (CSR) and where Bcl6 tightly regulates B-cell differentiation into memory B-cells or plasma cells. GC B cells rely heavily on glucose, fatty acids, and oxidative phosphorylation (OXPHOS) for their energy requirements. However, the complicated association between GC B cells and their metabolism is still not clearly understood. Here, we review several studies of B-cell metabolism, highlighting the significant transformations that occur in GC progression, and suggest possible approaches that may be investigated to more precisely target aberrant B-cell metabolism in SLE.application/pdfenCreative Commons Attribution 4.0 InternationalB cellsgerminal centersBCL6lupusmetabolismAltered Germinal-Center Metabolism in B Cells in AutoimmunityArticle - Refereed2022-01-10Metaboliteshttps://doi.org/10.3390/metabo12010040