Shahdi, Arya2021-06-042021-06-042021-06-03vt_gsexam:31647http://hdl.handle.net/10919/103603In the area of geothermal energy mapping, scientists have used physics-based models and bottom-hole temperature measurements from oil and gas wells to generate heat flow and temperature-at-depth maps. Given the uncertainties and simplifying assumptions associated with the current state of physics-based models used in this field, this thesis explores an alternate approach for locating geothermally active regions using machine learning methods coupled with physics knowledge of geothermal energy problems, in the emerging field of physics-guided machine learning. There are two primary contributions of this thesis. First, we present a thorough analysis of using state-of-the-art machine learning models to predict a subsurface geothermal parameter, temperature-at-depth, using a rich geo-spatial dataset across the Appalachian Basin. Specifically, we explore a suite of machine learning algorithms such as neural networks (DNN), Ridge regression (R-reg) models, and decision-tree-based models (e.g., XGBoost and Random Forest). We found that XGBoost and Random Forests result in the highest accuracy for subsurface temperature prediction. We also ran our model on a fine spatial grid to provide 2D continuous temperature maps at three different depths using the XGBoost model, which can be used to locate prospective geothermally active regions. Second, we develop a physics-guided machine learning model for predicting subsurface temperatures that not only uses surface temperature, thermal conductivity coefficient, and depth as input parameters, but also the heat-flux parameter that is known to be a potent indicator of temperature-at-depth values according to physics knowledge of geothermal energy problems. Since, there is no independent easy-to-use method for observing heat-flux directly or inferring it from other observed variables. We develop an innovative approach to take into account heat-flux parameters through a physics-guided clustering-regression model. Specifically, the bottom-hole temperature data is initially clustered into multiple groups based on the heat-flux parameter using Gaussian mixture model (GMM). This is followed by training neural network regression models using the data within each constant heat-flux region. Finally, a KNN classifier is trained for cluster membership prediction. Our preliminary results indicate that our proposed approach results in lower errors as the number of clusters increases because the heat-flux parameter is indirectly accounted for in the machine learning model.ETDIn CopyrightRenewable EnergyGeothermal EnergyMachine learningXGBoostSubsurface temperaturegeothermal gradientPhysics-guided Machine Learning Approaches for Applications in Geothermal Energy PredictionThesis