Amarh, Eugene Annan2017-11-022017-11-022017-05-02etd-05152017-155949http://hdl.handle.net/10919/79952State highway agencies are searching for more cost-effective methods of rehabilitating roads. One sustainable solution is full-depth reclamation (FDR), a pavement rehabilitation technique that involves pulverizing and reusing materials from existing distressed pavements in place. There is, however, limited information on the long-term properties of these recycled materials. One important property, the elastic modulus, indicates the structural capacity of pavement materials and is highly recommended for design purposes by the Mechanistic Empirical Pavements Design Guide (MEPDG). The elastic modulus directly impacts selection of the overall pavement thickness, and an accurate estimation of the modulus is therefore key to a cost-effective pavement design. This thesis researched the modulus trends and functional properties of three in-service pavements rehabilitated with the FDR technique during the 2008 Virginia Department of Transportation (VDOT) construction season. Foamed asphalt (2.7% with 1% cement), asphalt emulsion (3.5%), and Portland cement (5%) were used as stabilizing agents for the FDR layers. Several deflection tests and distress surveys were conducted for the pavement sections before and after construction. An automated road analyzer (ARAN) was used to collect distress data over a period of 7 years. Deterioration models were developed to predict the durability of differently stabilized FDR pavements and compared to reference sections rehabilitated with traditional asphalt concrete (AC) overlays. The results of the moduli measured for the recycled base materials varied significantly over time. These changes were attributed to curing after construction, seasonal effects, and subgrade moisture. The structural capacity of the pavements improved irrespective of the stabilizing agent used. Rutting was higher for the foamed asphalt and emulsion sections. The International Roughness Index (IRI) was better for the cement stabilized sections compared asphalt stabilized sections. The Critical Condition Index (CCI) was similar for all treatments at the end of the evaluation period. The durability of the sections was comparable, with the cement stabilized FDR sections slightly outperforming the asphalt stabilized sections.en-USIn CopyrightElastic ModulusTime-Dependent ResponseFull-Depth ReclamationRecycled baseCritical Condition IndexEvaluating the Mechanical Properties and Long-Term Performance of Stabilized Full-Depth Reclamation Base MaterialsThesishttp://scholar.lib.vt.edu/theses/available/etd-05152017-155949/