Bowers, Lindsey Carolle2021-06-292021-06-292021-06-28vt_gsexam:31785http://hdl.handle.net/10919/104053Soybean [Glycine max (L.) Merr.] seed cost has increased dramatically with the introduction and adoption of herbicide-resistant cultivars, generating interest from growers to reduce seeding rates to the lowest possible level that does not affect yield. Research indicates that greater seeding rates are needed to maximize yield under low-yielding environments and less seed is needed in high-yielding environments, but this has not been confirmed with recent research in Virginia. The objectives of this research was to 1) determine the yield response of soybean cultivars with differing growth habits and maturities grown in full-season and double-crop systems to seeding rate under different yield environments; and 2) compare two seeding rates in large on-farm strip-plots to determine if the growth environment within the field affects the yield response to seeding rate. For objective 1, small-plot research was conducted on Piedmont and Coastal Plain sites across Virginia from 2017 thru 2020. Maturity group (MG) 4 or 5 cultivars were planted in 46-cm rows at the following seeding rates: full-season soybean – 74,130, 148,260, 222,390, 296,520, 370,650, and 444,780 seed ha-1; and double-crop soybean – 197,680, 296,520, 395,360, 494,200, 543,620, and 593,040 seed ha-1. One cultivar per MG was used in 2017 and 2018, but the experiments were expanded to include two cultivars, differing in canopy structure, within each MG in 2019 and 2020. On-farm research compared a high and low seeding rate with a 100,000 seed ha-1 difference based upon grower current practices. To determine growth influence on the yield response, normal difference vegetative index (NDVI) was measured at 2-week intervals from late-vegetative to late-reproductive stages in small-plot and on-farm experiments. Double-crop soybean required an average of 205,000 more seed ha-1 than full-season soybean. Although yield response varied with site and year, MG 4 cultivars usually yielded more than MG 5 at higher seeding rates, but less at lower seeding rate. No differences between cultivar canopy structure were present in full-season systems; differences were revealed in double-crop systems but were not consistent over sites. To obtain 95% of maximum yield, 170,000 to 390,000 seed ha-1 were required in full-season soybean and 470,000 to 550,000 seed ha-1 were required in double-crop soybean. While the NDVI response to seeding rate generally reflected the yield response at most site-years, relationship between yield and NDVI was weak. In on-farm experiments, higher seeding rates yielded more at 3 of 6 sites, but differences varied within the field. The yield-NDVI relationship was stronger due to greater variability within the field, but these differences due to seeding rate could not be discerned. Growing environment, primarily amount and distribution of rainfall, greatly influenced these results; therefore, more exact site-specific seed rate recommendations will be difficult in Virginia's environment.ETDIn CopyrightSoybeanseeding rateSoybean Growth and Yield Response to Seeding Rate in VirginiaThesis