Kedrowitsch, Alexander Lee2018-11-282018-11-282017-06-05vt_gsexam:10863http://hdl.handle.net/10919/86164The ever-evolving nature of botnets have made constant malware collection an absolute necessity for security researchers in order to analyze and investigate the latest, nefarious means by which bots exploit their targets and operate in concert with each other and their bot master. In that effort of on-going data collection, honeypots have established themselves as a curious and useful tool for deception-based security. Low-powered devices, such as the Raspberry Pi, have found a natural home with some categories of honeypots and are being embraced by the honeypot community. Due to the low cost of these devices, new techniques are being explored to employ multiple honeypots within a network to act as sensors, collecting activity reports and captured malicious binaries to back-end servers for later analysis and network threat assessments. While these techniques are just beginning to gain their stride within the security community, they are held back due to the minimal amount of deception a traditional honeypot on a low-powered device is capable of delivering. This thesis seeks to make a preliminary investigation into the viability of using Linux containers to greatly expand the deception possible on low-powered devices by providing isolation and containment of full system images with minimal resource overhead. It is argued that employing Linux containers on low-powered device honeypots enables an entire category of honeypots previously unavailable on such hardware platforms. In addition to granting previously unavailable interaction with honeypots on Raspberry Pis, the use of Linux containers grants unique advantages that have not previously been explored by security researchers, such as the ability to defeat many types of virtual environment and monitoring tool detection methods.ETDIn CopyrightsecuritydeceptionhoneypotscontainersDeceptive Environments for Cybersecurity Defense on Low-power DevicesThesis