Peters, David W.2014-03-142014-03-141992etd-09052009-040444http://hdl.handle.net/10919/44558Tip leakage losses were studied in a linear turbine cascade with a tip clearance gap equal to 2.1 percent of blade height. The blades of the cascade have a turning angle of 109.4 degrees, an aspect ratio of 1.0, and an axial chord length of 235.2 mm. The cascade was located at the exit of a low speed wind tunnel; the blade exit Reynolds number based upon blade axial chord was 4.5x10⁵. The flow was measured at a plane 0.96 axial chords downstream from the blade leading edge. Barlier studies performed at the tip gap exit and at a downstream plane 1.4 axial chords from the blade leading edge were utilized with the present study to understand loss development better. The effect of tip leakage and the corresponding loss production mechanisms involved as the flow mixes out were analyzed. As part of the objective of the study, a computerized data acquisition system was developed which acquires pressure data and controls movement of a five hole pressure probe. The flow properties at the measurement plane were numerically integrated. To estimate the maximum potential loss of the cascade, the flow was mixed-out through a momentum analysis. The loss at the measurement plane due to tip leakage was found to be equal to the sum of the total pressure loss within the tip gap and the dissipated tip gap secondary kinetic energy. As the flow proceeded downstream, losses were attributed to dissipation of secondary kinetic energy, trailing edge wake mixing, endwall losses, and primary flow mixing.xii, 142 leavesBTDapplication/pdfenIn CopyrightLD5655.V855 1992.P473Turbines -- Blades -- TestingTurbomachines -- Blades -- TestingTip leakage loss development in a linear turbine cascadeThesishttp://scholar.lib.vt.edu/theses/available/etd-09052009-040444/