Porter, Erica May2019-07-102019-07-102019-07-09vt_gsexam:19827http://hdl.handle.net/10919/91385Bayesian hierarchical models are useful for modeling spatial data because they have flexibility to accommodate complicated dependencies that are common to spatial data. In particular, intrinsic conditional autoregressive (ICAR) models are commonly assigned as priors for spatial random effects in hierarchical models for areal data corresponding to spatial partitions of a region. However, selection of prior distributions for these spatial parameters presents a challenge to researchers. We present and describe ref.ICAR, an R package that implements an objective Bayes intrinsic conditional autoregressive prior on a vector of spatial random effects. This model provides an objective Bayesian approach for modeling spatially correlated areal data. ref.ICAR enables analysis of spatial areal data for a specified region, given user-provided data and information about the structure of the study region. The ref.ICAR package performs Markov Chain Monte Carlo (MCMC) sampling and outputs posterior medians, intervals, and trace plots for fixed effect and spatial parameters. Finally, the functions provide regional summaries, including medians and credible intervals for fitted values by subregion.ETDIn CopyrightBayesian AnalysisSpatial StatisticsApplying an Intrinsic Conditional Autoregressive Reference Prior for Areal DataThesis