Chakraborty, PrithwishLewis, Bryan L.Eubank, StephenBrownstein, John S.Marathe, Madhav V.Ramakrishnan, Naren2018-10-152018-10-152018-10-12http://hdl.handle.net/10919/85375Accurate and timely influenza (flu) forecasting has gained significant traction in recent times. If done well, such forecasting can aid in deploying effective public health measures. Unlike other statistical or machine learning problems, however, flu forecasting brings unique challenges and considerations stemming from the nature of the surveillance apparatus and the end utility of forecasts. This article presents a set of considerations for flu forecasters to take into account prior to applying forecasting algorithms.application/pdfen-USCreative Commons Attribution 4.0 InternationalWhat to know before forecasting the fluArticle - RefereedPLOS Computational Biologyhttps://doi.org/10.1371/journal.pcbi.10059641410