Socha, John J.Laha, BireswarBowman, Douglas A.2017-03-042017-03-042016-09-282296-9144http://hdl.handle.net/10919/75240Analysis of raw volume data generated from different scanning technologies faces a variety of challenges, related to search, pattern recognition, spatial understanding, quantitative estimation, and shape description. In a previous study, we found that the volume cracker (VC) 3D interaction (3DI) technique mitigated some of these problems, but this result was from a tethered glove-based system with users analyzing simulated data. Here, we redesigned the VC by using untethered bare-hand interaction with real volume datasets, with a broader aim of adoption of this technique in research labs. We developed symmetric and asymmetric interfaces for the bare-hand VC (BHVC) through design iterations with a biomechanics scientist. We evaluated our asymmetric BHVC technique against standard 2D and widely used 3DI techniques with experts analyzing scanned beetle datasets. We found that our BHVC design significantly outperformed the other two techniques. This study contributes a practical 3DI design for scientists, documents lessons learned while redesigning for bare-hand trackers and provides evidence suggesting that 3DI could improve volume data analysis for a variety of visual analysis tasks. Our contribution is in the realm of 3D user interfaces tightly integrated with visualization for improving the effectiveness of visual analysis of volume datasets. Based on our experience, we also provide some insights into hardware-agnostic principles for design of effective interaction techniques.Creative Commons Attribution 4.0 InternationalBare-hand volume cracker for raw volume data analysisArticle - RefereedThe Author(s)Frontiers in Robotics and AIhttps://doi.org/10.3389/frobt.2016.00056356