Charkhesht, Ali2020-12-172020-12-172019-06-25vt_gsexam:20653http://hdl.handle.net/10919/101513Studying dynamics of proteins in their biological milieu such as water is interesting because of their strong absorption in the terahertz range that contain information on their global and sub-global collective vibrational modes (conformational dynamics) and global dynamical correlations among solvent water molecules and proteins. In addition, water molecules dynamics within protein solvation layers play a major role in enzyme activity. However, due to the strong absorption of water in the gigahertz-to-terahertz frequencies, it is challenging to study the properties of the solvent dynamics as well as the conformational changes of protein in water. In response, we have developed a highly sensitive megahertz-to-terahertz dielectric spectroscopy system to probe the hydration shells as well as large-scale dynamics of these biomolecules. Thereby, we have deduced the conformation flexibility of proteins and compare the hydration dynamics around proteins to understand the effects of surface-mediated solvent dynamics, relationships among different measures of interfacial solvent dynamics, and protein-mediated solvent dynamics based on the complex dielectric response from 50 MHz up to 2 THz by using the system we developed. Comparing these assets of various proteins in different classes helps us shed light on the macromolecular dynamics in a biologically relevant water environment.ETDIn CopyrightTerahertz SpectroscopyDielectric SpectroscopyMolecular DynamicsHydration DynamicsProteinsProbing Collective Motions and Hydration Dynamics of Biomolecules by a Wide Range Dielectric SpectroscopyDissertation