Williams, HarrisonHicks, Matthew2024-05-022024-05-022024-04-27https://hdl.handle.net/10919/118733Batteryless energy harvesting systems enable a wide array of new sensing, computation, and communication platforms untethered by power delivery or battery maintenance demands. Energy harvesters charge a buffer capacitor from an unreliable environmental source until enough energy is stored to guarantee a burst of operation despite changes in power input. Current platforms use a fixed-size buffer chosen at design time to meet constraints on charge time or application longevity, but static energy buffers are a poor fit for the highly volatile power sources found in real-world deployments: fixed buffers waste energy both as heat when they reach capacity during a power surplus and as leakage when they fail to charge the system during a power deficit. To maximize batteryless system performance in the face of highly dynamic input power, we propose REACT: a responsive buffering circuit which varies total capacitance according to net input power. REACT uses a variable capacitor bank to expand capacitance to capture incoming energy during a power surplus and reconfigures internal capacitors to reclaim additional energy from each capacitor as power input falls. Compared to fixed-capacity systems, REACT captures more energy, maximizes usable energy, and efficiently decouples system voltage from stored charge—enabling low-power and high-performance designs previously limited by ambient power. Our evaluation on real-world platforms shows that REACT eliminates the tradeoff between responsiveness, efficiency, and longevity, increasing the energy available for useful work by an average 25.6% over static buffers optimized for reactivity and capacity, improving event responsiveness by an average 7.7𝑥 without sacrificing capacity, and enabling programmer directed longevity guarantees.application/pdfenCreative Commons Attribution 4.0 InternationalEnergy-Adaptive Buffering for Efficient, Responsive, and Persistent Batteryless SystemsArticle - Refereed2024-05-01The author(s)https://doi.org/10.1145/3620666.3651370