Plymale, William O.2013-02-192013-02-192013-01-11vt_gsexam:318http://hdl.handle.net/10919/19223Wireless and pervasive computing research continues to study ways the Internet of Things (IoT)<br />can make lives easier and more productive. Areas of interest include advances in new<br />architectures and frameworks that support large-scale IoT deployments beyond research<br />prototypes, simple and inexpensive human-to-device and device-to-device interfaces, and user<br />decision making support with opportunistic information services.<br /><br />This dissertation investigates the design and implementation of a general-purpose framework<br />upon which IoT and opportunistic computing (OC) systems can be built.<br /><br />The result of this work is Pebbles and Urns (P&U), a casually accessible system designed to<br />deliver information to a person that is pertinent and beneficial to them with respect to their<br />current activity, location and other contexts. P&U is a proximity-based information delivery<br />framework that leverages a simple, inexpensive tangible interface and context-rich, physicallysituated,<br />distributed information repositories. By its proposed use of enforced proximity, local<br />context, and location-specific services, P&U can support the situated interaction between user<br />and place.<br /><br />The P&U framework is based on a layered architecture consisting of an isolated physical<br />communication layer, a data repository supporting opportunistic service composition and<br />delivery, and a controller/interface providing user feedback. Serving as a potential IoT design<br />pattern, P&U application developers can use the framework API\'s and software tools to build<br />and deploy P&U systems.<br /><br />As validation of this work, P&U prototypes are constructed using the framework, API\'s and<br />software tools. The prototypes are based on use cases depicting a person engaged in the day-today<br />activities of attending class, going to the gym and grocery shopping. Performance<br />measurements are performed on the prototypes profiling core components of the framework.<br />Results indicate proper functioning of P&U tangible interfaces, communication connections,<br />service request and delivery, and internal framework operations.<br /><br />Contributions of this research include a general-purpose framework, a simple IoT interface and<br />an opportunistic engine.ETDIn Copyrightpervasive computingopportunisticsituatedPebbles and Urns: A Tangible, Presence-Based Service Delivery FrameworkDissertation