Ayaluru Venkata Krishnan, Sruthi2024-06-012024-06-012024-05-31vt_gsexam:40496https://hdl.handle.net/10919/119221The exploration of leveraging physical attributes of hardware for cryptographic purposes has become a topic of research. Among these avenues, the utilization of Physical Unclonable Functions (PUFs) is one feature that is widely studied. PUFs provide the ability to generate encryption keys for device authentication by exploiting inherent variations in physical structures. In this research work, the focus lies on probing the characteristics of a DRAM-based PUF structure on the Intel Galileo Platform to discern its degradation traits and assess its suitability as a cryptographic primitive. As the adoption of PUFs in diverse applications surges, it becomes imperative to scrutinize their susceptibility to various forms of side-channel attacks. The research work is divided into two parts. First, experimental investigations have been undertaken to ascertain the vulnerability of the DRAM PUF which is the magnetic fault injection to understand its resilience against such threats. Secondly, the analysis of PUF measurements has been conducted to elucidate its potential as a dependable source for physical cryptography, particularly in the context of the oblivious transfer protocol which is based on the fuzzy transfer protocol. The results contributes to a deeper understanding of its application as a physical token as well as the security implications associated with deploying PUFs in cryptographic applications and pave the way for the development of robust countermeasures to mitigate emerging risks.ETDenIn CopyrightDRAM-based PUFMagnetic Fault InjectionPhysical CryptographyThe application of DRAM PUF as a physical tokenThesis