Modi, Rishit Bipinkumar2020-06-022020-06-022020-06-01vt_gsexam:26243http://hdl.handle.net/10919/98661In a bid to reduce vehicular emissions, automobile manufacturers are moving towards elec- tric and hybrid vehicles. Most hybrid vehicles use Lithium-ion batteries as energy storage systems. Lithium-ion batteries have a narrow range of temperature within which they can be operated efficiently. Operation of Lithium-ion batteries outside this range decreases the life of batteries and reduces performance of the vehicle. Due to this limitation, it is important to prevent overheating of Lithium-ion batteries. Battery pack studied in this work has a fan system for air-cooling the cells. The battery management system (BMS) in the battery pack functions to keep the temperature of the cells within allowable limits by either regulating the fan speed or communicating with the vehicle controller to adjust magnitude of applied current. BMS used in the work is equipped with limited number of temperature sensors that can measure surface temperature of few cells in the battery pack. Additional temper- ature information can be used for better thermal control of the cells in the battery pack. Lithium-ion cells are known to have a measurable temperature gradient when operating un- der extreme conditions. As a result, the surface temperature of cells as measured by the temperature sensors in BMS is not always representative of the maximum cell temperature. To overcome these limitations, a simplified transient thermal model predicting core and sur- face temperature of cell is presented in this work. This model can be implemented in a BMS for real-time control of cell temperature. The thermal model is validated against data avail- able from testing the battery pack. Different current profiles, representative of real-world driving scenarios, are applied to the thermal model and the temperature rise of cells under those conditions is studied. For an array of cells, the thermal model predicts significant temperature rise along the airflow direction, suggesting the use of last cell temperature for thermal control. For short duration, high magnitude of current pulses, temperature rise is shown to be similar for same thermal energy deposited by different current pulses. The maximum thermal energy that can be deposited in the battery by a current pulse can be determined for given conditions of airflow rate, continuous current and air inlet temperature. The maximum magnitude of thermal energy that can be deposited by a peak current pulse to limit cell temperature is shown to be a function of current magnitude squared and the pulse duration time. For multiple current pulses applied to the battery pack, the model can evaluate the minimum time interval between current pulses to keep the temperature of cells within prescribed limits. The minimum time required between two current pulses is shown to decrease by increasing the airflow rate through the battery pack. By increasing the airflow rate, the battery pack is able to operate at a higher continuous current without exceeding the temperature limit.ETDIn CopyrightLithium-ion batteriesHeat--Transmissionthermal modelControl-Oriented Thermal Model for a Hybrid Vehicle BatteryThesis