Brown, Kenneth Alexander2016-11-022016-11-022016-11-01vt_gsexam:8678http://hdl.handle.net/10919/73363The aerodynamic behavior of wind tunnels with porous, flexible walls formed from tensioned Kevlar has been characterized and new measurement techniques in such wind tunnels explored. The objective is to bring the aerodynamic capabilities of so-called Kevlar-wall test sections in-line with those of traditional solid-wall test sections. The primary facility used for this purpose is the 1.85-m by 1.85-m Stability Wind Tunnel at Virginia Tech, and supporting data is provided by the 2-m by 2-m Low Speed Wind Tunnel at the Japanese Aerospace Exploration Agency, both of which employ Kevlar-wall test sections that can be replaced by solid-wall test sections. The behavior of Kevlar fabric, both aerodynamically and mechanically, is first investigated to provide a foundation for calculations involving wall interference correction and determination of the boundary conditions at the Kevlar wall. Building upon previous advancements in wall interference corrections for Kevlar-wall test sections, panel method codes are then employed to simulate the wind tunnel flow in the presence of porous, flexible Kevlar walls. An existing two-dimensional panel method is refined by examining the dependency of correction performance on key test section modeling assumptions, and a novel three-dimensional method is presented. Validation of the interference corrections, and thus validation of the Kevlar-wall aerodynamic performance, is accomplished by comparing aerodynamic coefficients between back-to-back tests of models carried out in the solid- and Kevlar-wall test sections. Analysis of the test results identified the existence of three new mechanisms by which Kevlar walls cause wall-interference. Additionally, novel measurements of the boundary conditions are made during the Kevlar-wall tests to characterize the flow at the boundary. Specifically, digital image correlation is used to measure the global deformation of the Kevlar walls under wind loading. Such data, when used in conjunction with knowledge of the pre-tension in the Kevlar wall and the material properties of the Kevlar, yields the pressure loading experienced by the wall. The pressure loading problem constitutes an inverse problem, and significant effort is made towards overcoming the ill-posedness of the problem to yield accurate wall pressure distributions, as well as lift measurements from the walls. Taken as a whole, this document offers a comprehensive view of the aerodynamic performance of Kevlar-wall test sections.ETDIn Copyrightwind tunnelaerodynamicsaeroacousticsKevlar-wallwall interferencepanel methodporosityinverse problemdigital image correlationmembrane mechanicsUnderstanding and Exploiting Wind Tunnels with Porous Flexible Walls for Aerodynamic MeasurementDissertation