Webster, Keith Gordon2014-03-142014-03-142007-01-29etd-01302007-141530http://hdl.handle.net/10919/31077This thesis investigates the characteristics of a close proximity underwater explosion and its effect on a ship-like structure. Finite element model tests are conducted to verify and validate the propagation of a pressure wave generated by an underwater explosion through a fluid medium, and the transmission of the pressure wave in the fluid to a structure using the Multi-Material Arbitrary Lagrangian/Eulerian method. A one dimensional case modeling the detonation of a spherical TNT charge underwater is investigated. Three dimensional cases modeling the detonation of an underwater spherical TNT charge, and US Navy Blast Test cases modeling a shape charge and a circular steel plate, and a shape charge and a Sandwich Plate System (SPS) are also investigated. This thesis provides evidence that existing tools and methodologies have some capability for predicting early-time/close proximity underwater explosion effects, but are insufficient for analyses beyond the arrival of the initial shock wave. This thesis shows that a true infinite boundary condition, a modified Gruneisen equation of state near the charge, and the ability to capture shock without a very small element size is needed in order to provide a sufficient means for predicting early-time/close proximity underwater explosion effects beyond the arrival of the initial shock wave.In CopyrightFluid/Structure InteractionUNDEXSandwich Plate System (SPS)US Navy Blast TestMMALEProximityInvestigation of Close Proximity Underwater Explosion Effects on a Ship-Like Structure Using the Multi-Material Arbitrary Lagrangian Eulerian Finite Element MethodThesishttp://scholar.lib.vt.edu/theses/available/etd-01302007-141530/