De Clerck, Albrey Paul2020-10-242020-10-242020-10-23vt_gsexam:27991http://hdl.handle.net/10919/100688Recent industry trends toward more complex and interconnected systems have increased the demand for more reliable pressure sensors. One of the best methods to ensure reliability is by regularly calibrating the sensor, checking its functionality and accuracy. By integrating a micro-actuator with a pressure sensor, the sensor can self-calibrate, eliminating the complexities and costs associated with traditional sensor calibration methods. The present work is focused on furthering understanding and improving the thermal performance of a thermopneumatic actuated self-calibrating pressure sensor. A transient numerical model was developed in ANSYS and was calibrated using experimental testing data. The model provided insights into the sensor's performance not previously observed in experimental testing, such as the temperature gradient within the sensor and its implications. Furthermore, the model was utilized for two design studies. First, the sensor's inefficiencies were studied, and it was found that a substrate with low thermal conductivity and high thermal diffusivity is ideal for both the sensor's efficiency and a faster transient response time. The second design study showed that decreasing the size of the sealed reference cavity, decreases power consumption and transient response time. The study also showed that decreasing the cavity base dimension has a larger effect on decreasing power consumption and response time. Overall, the present work increases understanding of the self-calibrating pressure sensor and provides insight into potential design improvements, moving closer to true self-calibrating pressure sensors.ETDIn CopyrightSelf-calibratingIntelligentMEMSPressure SensorModeling the Thermal Performance of an Intelligent MEMS Pressure Sensor with Self-Calibration CapabilitiesThesis