Dahshan, Mai Mansour Soliman Ismail2023-12-032023-12-032021-06-10vt_gsexam:30707https://hdl.handle.net/10919/116716Recent advancements in data acquisition, storage, and computing power have enabled scientists from various scientific and engineering domains to simulate more complex and longer phenomena. Scientists are usually interested in understanding the behavior of a phenomenon in different conditions. To do so, they run multiple simulations with different configurations (i.e., parameter settings, boundary/initial conditions, or computational models), resulting in an ensemble dataset. An ensemble empowers scientists to quantify the uncertainty in the simulated phenomenon in terms of the variability between ensemble members, the parameter sensitivity and optimization, and the characteristics and outliers within the ensemble members, which could lead to valuable insight(s) about the simulated model. The size, complexity, and high dimensionality (e.g., simulation input and output parameters) of simulation ensembles pose a great challenge in their analysis and exploration. Ensemble visualization provides a convenient way to convey the main characteristics of the ensemble for enhanced understanding of the simulated model. The majority of the current ensemble visualization techniques are mainly focused on analyzing either the ensemble space or the parameter space. Most of the parameter space visualizations are not designed for high-dimensional data sets or did not show the intrinsic structures in the ensemble. Conversely, ensemble space has been visualized either as a comparative visualization of a limited number of ensemble members or as an aggregation of multiple ensemble members omitting potential details of the original ensemble. Thus, to unfold the full potential of simulation ensembles, we designed and developed an approach to the visual analysis of high-dimensional simulation ensembles that merges sensemaking, human expertise, and intuition with machine learning and statistics. In this work, we explore how semantic interaction and sensemaking could be used for building interactive and intelligent visual analysis tools for simulation ensembles. Specifically, we focus on the complex processes that derive meaningful insights from exploring and iteratively refining the analysis of high dimensional simulation ensembles when prior knowledge about ensemble features and correlations is limited or/and unavailable. We first developed GLEE (Graphically-Linked Ensemble Explorer), an exploratory visualization tool that enables scientists to analyze and explore correlations and relationships between non-spatial ensembles and their parameters. Then, we developed Spatial GLEE, an extension to GLEE that explores spatial data while simultaneously considering spatial characteristics (i.e., autocorrelation and spatial variability) and dimensionality of the ensemble. Finally, we developed Image-based GLEE to explore exascale simulation ensembles produced from in-situ visualization. We collaborated with domain experts to evaluate the effectiveness of GLEE using real-world case studies and experiments from different domains. The core contribution of this work is a visual approach that enables the exploration of parameter and ensemble spaces for 2D/3D high dimensional ensembles simultaneously, three interactive visualization tools that explore search, filter, and make sense of non-spatial, spatial, and image-based ensembles, and usage of real-world cases from different domains to demonstrate the effectiveness of the proposed approach. The aim of the proposed approach is to help scientists gain insights by answering questions or testing hypotheses about the different aspects of the simulated phenomenon or/and facilitate knowledge discovery of complex datasets.ETDIn CopyrightSimulation EnsemblesVisual AnalyticsDeep LearningGaussian ProcessParallel ComputationVisual Analytics for High Dimensional Simulation EnsemblesDissertation