Menkulasi, Fatmir2014-08-242014-08-242014-08-23vt_gsexam:3465http://hdl.handle.net/10919/50413The inverted T-beam bridge system provides an accelerated bridge construction alternative for short-to-medium-span bridges. The system consists of adjacent precast inverted T-beams finished with a cast-in-place concrete topping. The system offers enhanced performance against reflective cracking, and reduces the likelihood of cracking due to time dependent effects. The effects of transverse bending due to concentrated wheel loads are investigated with respect to reflective cracking. Transverse bending moment are quantified and compared to transverse moment capacities provided by a combination of various cross-sectional shapes and transverse connections. A design methodology for transverse bending is suggested. Tensile stresses created due to time dependent and temperature effects are quantified at the cross-sectional and structure level and strategies for how to alleviate these tensile stresses are proposed. Because differential shrinkage is believed to be one of the causes of deck cracking in composite bridges, a study on shrinkage and creep properties of seven deck mixes is presented with the goal of identifying a mix whose long terms properties reduce the likelihood of deck cracking. The effects of differential shrinkage at a cross-sectional level are numerically demonstrated for a variety of composite bridge systems and the resistance of the inverted T-beam system against time dependent effects is highlighted. End stresses in the end zones of such a uniquely shaped precast element are investigated analytically in the vertical and horizontal planes. Existing design methods are evaluated and strut-and-tie models, calibrated to match the results of 3-D finite element analyses, are proposed as alternatives to existing methods to aid designers in sizing reinforcing in the end zones. Composite action between the precast beam and the cast-in-place topping is examined via a full scale test and the necessity of extended stirrups is explored. It is concluded that because of the large contact surface between the precast and cast-in-place elements, cohesion alone appears to provide the necessary horizontal shear strength to ensure full composite action. Live load distribution factors are quantified analytically and by performing four live loads tests. It is concluded that AASHTO's method for cast-in-place slab span bridges can be conservatively used in design.ETDIn CopyrightPrecast Inverted T-beamsTransverse BendingTime Dependent EffectsTemperature effectsEnd StressesComposite ActionLive Load Distribution FactorsDevelopment of a Composite Concrete Bridge System for Short-to-Medium-Span BridgesDissertation