Anderson, Evan Pelzner2016-09-222016-09-222010-05-03etd-05172010-203147http://hdl.handle.net/10919/72988Carbonaceous Compressions are a widespread preservational style for fossils, yet their taphonomy remains poorly understood. Previous studies focusing on the taphonomy of carbonaceous compressions have primarily looked at exceptionally preserved faunas in plane view. The precious nature of these fossils leaves destructive techniques of analysis out of the question, but these techniques are necessary if the taphonomy of carbonaceous compressions is to be deciphered. This study analyzes Neoproterozoic carbonaceous compressions from the Yangtze Gorges area in order to address this issue. Chuaria fossils from the Jiulongwan, Sixi, and Sifangtan sections of the Doushantuo Formation and Vendotaenia fossils from the Wuhe and Miaohe sections of the Denying Formation are microchemically analyzed in both plane view and cross section in order to gain a greater understanding of the makeup of carbonaceous compressions. Results confirm and elaborate on previous studies. Likely clay coats are detected on some Chuaria specimens, while they are absent on less thermally mature specimens. Evidence for sulfate reduction in association with carbonaceous compressions is found. Sulfur enrichment, rather than clay coats, is found in association with Vendotaenia fossils. These observations lead to the hypothesis that while organic remains require a very precise set of taphonomic conditions in order to be preserved as carbonaceous compressions, there may be more than one set of conditions that allow for preservation. More studies of a greater taxonomic and taphonomic range of carbonaceous compressions are needed, however, if the mechanisms which control this preservational pathway are to be fully understood.en-USIn CopyrightCarbonaceous CompressionChuariaElemental MappingTaphonomyVendotaeniaChuaria, Vendotaenia, and the taphonomy of the Carbonaceous CompressionThesishttp://scholar.lib.vt.edu/theses/available/etd-05172010-203147/