Friedman, Brianna2021-06-052021-06-052021-06-01vt_gsexam:31137http://hdl.handle.net/10919/103612Accessible flood modeling for low-resource, data-scarce communities currently does not exist. This paper proposes using drone imagery to compensate for the lack of other flood modeling data (i.e. streamflow measurements). Three flood models were run for Dzaleka Refugee Camp, located in Dowa, Malawi. Two of the models (the Soil and Water Assessment Tool (SWAT) and the Hydrologic Engineering Center River Analysis System (HEC-RAS)) are commonly used hydrological-hydraulic based models. The third model, the Water Caused Erosion Patterns (WCEP) model, was proposed by the author to capitalize on the high-resolution drone imagery using geological-geomorphological information. The drone imagery used in this study has a resolution of 3.5cm and shows erosion patterns throughout the refugee camp. By comparing the erosion patterns to flow direction of the surface, the erosion patterns were determined to be water caused or not water caused, the erosion patterns considered water caused were defined as high-risk flood areas, creating the WCEP model. The three models were compared using locations of collapsed houses throughout the camp. It was found that the WCEP model represents the location of collapsed houses significantly better (misclassification rate below 17%) than the SWAT or HEC-RAS models (misclassification rate below 54%, and 67% respectively). The WCEP model was combined with the best hydrological-hydraulic model (SWAT) to create a hydrogeomorphological model which capitalizes on both the drone imagery and the hydrological process.ETDIn CopyrightFlood ModelingDrone ImageryData-ScarceLow-ResourceDrone Imagery Applied to Enhance Flood ModelingThesis