Scholarly Works, Geography

Permanent URI for this collection

Research articles, presentations, and other scholarship

Browse

Recent Submissions

Now showing 1 - 20 of 118
  • Designing Virtual Pathways for Exploring Glacial Landscapes of Glacier National Park, Montana, USA for Physical Geography Education
    Gielstra, Dianna; Moorman, Lynn; Kelly, Jacquelyn; Schulze, Uwe; Resler, Lynn M.; Cerveny, Niccole V.; Gielstra, Johan; Bryant, Ami; Ramsey, Scott; Butler, David R. (MDPI, 2024-03-05)
    Virtual field trips in physical geography transcend our human limitations regarding distance and accessibility, allowing students to experience exemplars of physical environments. These experiences can be critical for students to connect to the physical world beyond traditional classroom formats of communicating themes and features in physical geography. To maximize the learning potential of these experiences, designers must engage in a translational process to take resources and content from the physical world and migrate it to an online, virtual format. However, these virtual learning experiences need to account for how learners learn; and should draw heavily on the foundations of educational research and field sciences, while highlighting the awe and beauty of the natural landscape itself. Crafting these spatial stories of the natural world with learning elements requires careful and intentional design to maximize the perception of physical features, patterns, and processes at the landscape scale. To help field-trip developers comprehend the workflows used to create perceptible, rich environments that spur students’ learning, we propose a development process (TECCUPD) as a guide to navigate the intersection of education and science, using an example of geodiversity and alpine glacial landscapes found in Glacier National Park, Montana.
  • The Relationship Between the Saharan Air Layer, Convective Environmental Conditions, and Precipitation in Puerto Rico
    Miller, Paul W.; Ramseyer, Craig A. (American Geophysical Union, 2024-01-04)
    The Saharan Air Layer (SAL) is a hot, dry, and dust-laden feature that advects large concentrations of dust across the Atlantic annually to destination regions in the Americas and Caribbean. However, recent work has suggested the SAL may be a contributing factor to high-impact drought in the Caribbean basin. While the SAL's characteristic dust loadings have been the focus of much previous research, fewer efforts have holistically engaged the co-evolution of the dust plume, its associated convective environment, and resultant rainfall in Caribbean islands. This study employs a self-organizing map (SOM) classification to identify the common trans-Atlantic dust transport typologies associated with the SAL during June and July 1981–2020. Using the column-integrated dust flux, termed integrated dust transport (IDT), from MERRA-2 reanalysis as a SAL proxy, the SOM resolved two common patterns which resembled trans-Atlantic SAL outbreaks. During these events, the convective environment associated with the SAL, as inferred by the Gálvez-Davison Index, becomes less conducive to precipitation as the SAL migrates further away from the west African coast. Simultaneously, days with IDT patterns grouped to the SAL outbreak typologies demonstrate island-wide negative precipitation anomalies in Puerto Rico. The SOM's most distinctive SAL outbreak pattern has experienced a statistically significant increase during the 40-year study period, becoming roughly 10% more frequent over that time. These results are relevant for both climate scientists and water managers wishing to better anticipate Caribbean droughts on both the long and short terms.
  • Advances in tropical climatology – a review
    Moraes, Flávia D. S.; Ramseyer, Craig A.; Miller, Paul W.; Trepanier, Jill C. (Informa, 2024-02-12)
    Understanding tropical climatology is essential to comprehending the atmospheric connections between the tropics and extratropical latitudes weather and climate events. In this review paper, we emphasize the advances in key areas of tropical climatology knowledge since the end of the 20th century and offer a summary, assessment, and discussion of previously published literature. Among the key areas analyzed here, we explore the advances in tropical oceanic and atmospheric variability, such as El Niño – Southern Oscillation and the Madden-Julian Oscillation, and how those teleconnection events have helped us to better understand variabilities in tropical monsoons, tropical cyclones, and drought events. We also discuss new concepts incorporated into the study of tropical cyclones, such as rapid intensification, and how those studies are evolving and helping scientists to better prepare and predict hurricanes. Regarding tropical aerosols, we discuss how satellite-based dust detection has improved the comprehension of Saharan dust as a driver of drought in locations far from the dust source region while simultaneously altering tropical cyclone variability. Finally, our review shows that there have been significant advances in tropical hydroclimatic studies in order to better investigate monsoons, flooding, and drought, helping scholars of tropical climatology to better understand its extreme events.
  • Simulation of Flood-Induced Human Migration at the Municipal Scale: A Stochastic Agent-Based Model of Relocation Response to Coastal Flooding
    Nourali, Zahra; Shortridge, Julie E.; Bukvic, Anamaria; Shao, Yang; Irish, Jennifer L. (MDPI, 2024-01-11)
    Human migration triggered by flooding will create sociodemographic, economic, and cultural challenges in coastal communities, and adaptation to these challenges will primarily occur at the municipal level. However, existing migration models at larger spatial scales do not necessarily capture relevant social responses to flooding at the local and municipal levels. Furthermore, projecting migration dynamics into the future becomes difficult due to uncertainties in human–environment interactions, particularly when historic observations are used for model calibration. This study proposes a stochastic agent-based model (ABM) designed for the long-term projection of municipal-scale migration due to repeated flood events. A baseline model is demonstrated initially, capable of using stochastic bottom-up decision rules to replicate county-level population. This approach is then combined with physical flood-exposure data to simulate how population projections diverge under different flooding assumptions. The methodology is applied to a study area comprising 16 counties in coastal Virginia and Maryland, U.S., and include rural areas which are often overlooked in adaptation research. The results show that incorporating flood impacts results in divergent population growth patterns in both urban and rural locations, demonstrating potential municipal-level migration response to coastal flooding.
  • Local studies provide a global perspective of the impacts of climate change on Indigenous Peoples and local communities
    Reyes-García, Victoria; García-Del-Amo, David; Porcuna-Ferrer, Anna; Schlingmann, Anna; Abazeri, Mariam; Attoh, Emmanuel M. N. A. N.; Vieira da Cunha Ávila, Julia; Ayanlade, Ayansina; Babai, Daniel; Benyei, Petra; Calvet-Mir, Laura; Carmona, Rosario; Caviedes, Julián; Chah, Jane; Chakauya, Rumbidzayi; Cuní-Sanchez, Aida; Fernández-Llamazares, Álvaro; Galappaththi, Eranga K.; Gerkey, Drew; Graham, Sonia; Guillerminet, Théo; Huanca, Tomás; Ibarra, José T.; Junqueira, André B.; Li, Xiaoyue; López-Maldonado, Yolanda; Mattalia, Giulia; Samakov, Aibek; Schunko, Christoph; Seidler, Reinmar; Sharakhmatova, Victoria; Singh, Priyatma; Tofighi-Niaki, Adrien; Torrents-Ticó, Miquel (2024-01-08)
    Indigenous Peoples and local communities with nature-dependent livelihoods are disproportionately affected by climate change impacts, but their experience, knowledge and needs receive inadequate attention in climate research and policy. Here, we discuss three key findings of a collaborative research consortium arising from the Local Indicators of Climate Change Impacts project. First, reports of environmental change by Indigenous Peoples and local communities provide holistic, relational, placed-based, culturally-grounded and multi-causal understandings of change, largely focused on processes and elements that are relevant to local livelihoods and cultures. These reports demonstrate that the impacts of climate change intersect with and exacerbate historical effects of socioeconomic and political marginalization. Second, drawing on rich bodies of inter-generational knowledge, Indigenous Peoples and local communities have developed context-specific responses to environmental change grounded in local resources and strategies that often absorb the impacts of multiple drivers of change. Indigenous Peoples and local communities adjust in diverse ways to impacts on their livelihoods, but the adoption of responses often comes at a significant cost due to economic, political, and socio-cultural barriers operating at societal, community, household, and individual levels. Finally, divergent understandings of change challenge generalizations in research examining the human dimensions of climate change. Evidence from Indigenous and local knowledge systems is context-dependent and not always aligned with scientific evidence. Exploring divergent understandings of the concept of change derived from different knowledge systems can yield new insights which may help prioritize research and policy actions to address local needs and priorities.
  • Atmospheric Flash Drought in the Caribbean
    Ramseyer, Craig A.; Miller, Paul W. (American Meteorological Society, 2023-09-13)
    Despite the intensifying interest in flash drought both within the U.S. and globally, moist tropical landscapes have largely escaped the attention of the flash drought community. Because these ecozones are acclimatized to receiving regular, near-daily precipitation, they are especially vulnerable to rapid-drying events. This is particularly true within the Caribbean basin where numerous small islands lack the surface and groundwater resources to cope with swiftly developing drought conditions. This study fills the tropical flash drought gap by examining the pervasiveness of flash drought across the pan-Caribbean region using a recently proposed criterion based on the Evaporative Demand Drought Index (EDDI). The EDDI identifies 46 instances of widespread flash drought “outbreaks” in which significant fractions of the pan-Caribbean encounter rapid drying over 15 days and then maintain this condition for another 15 days. Moreover, a self-organizing maps (SOM) classification reveals a tendency for flash drought to assume recurring typologies concentrated in either the Central American, South American, or Greater Antilles coastlines, though a simultaneous, Caribbean-wide drought is never observed within the 40-year (1981-2020) period examined. Further, three of the six flash drought typologies identified by the SOM initiate most often during Phase 2 of the Madden-Julian Oscillation. Collectively, these findings motivate the need to more critically examine the transferability of flash drought definitions into the global tropics, particularly for small water-vulnerable islands where even island-wide flash droughts may only occupy a few pixels in most reanalysis datasets.
  • The effects of projected climate change on crop water availability in the US Caribbean
    Moraes, Flavia D. S.; Ramseyer, Craig A.; Gamble, Douglas (IWA Publishing, 2023-04)
    Anthropogenic climate change affects small islands, and farming systems in the Caribbean are vulnerable to climate change due to their high dependence on rainfall. Therefore, this work evaluated how temperature and precipitation projections affect water crop needs in Puerto Rico and St. Croix. We used Daymet data to create a baseline climatology (1981-2010) and the Coupled Model Intercomparison Project Phase 6 (CMIP6) to create future climatologies (2041-2070 and 2071-2100). A water budget model estimated the water deficit, and the crop risk (CROPRISK) model determined crop suitability for sweet pepper, banana, and plantain. Results indicated an increase in water stress after 2041 for most of the region from June to August, except for western Puerto Rico, where it will occur from January to March. For sweet pepper, banana, and plantain, the most water-stressed season is projected to be January-July. November will be the only month during which all crops are projected to be highly suitable through the end of the 21st century. These findings suggested that Puerto Rico and St. Croix crop water stress may be more sensitive to changes in temperature than precipitation.
  • Evaluation of predicted loss of different land use and land cover (LULC) due to coastal erosion in Bangladesh
    Islam, Md Sariful; Crawford, Thomas W.; Shao, Yang (Frontiers, 2023-04)
    Coastal erosion is one of the most significant environmental threats to coastal communities globally. In Bangladesh, coastal erosion is a regularly occurring and major destructive process, impacting both human and ecological systems at sea level. The Lower Meghna estuary, located in southern Bangladesh, is among the most vulnerable landscapes in the world to the impacts of coastal erosion. Erosion causes population displacement, loss of productive land area, loss of infrastructure and communication systems, and, most importantly, household livelihoods. With an aim to assess the impacts of historical and predicted shoreline change on different land use and land cover, this study estimated historical shoreline movement, predicted shoreline positions based on historical data, and quantified and assessed past land use and land cover change. Multi-temporal Landsat images from 1988-2021 were used to quantify historical shoreline movement and past land use and land cover. A time-series classification of historical land use and land cover (LULC) were produced to both quantify LULC change and to evaluate the utility of the future shoreline predictions for calculating amounts of lost or newly added land resources by LULC type. Our results suggest that the agricultural land is the most dominant land cover/use (76.04% of the total land loss) lost over the studied period. Our results concluded that the best performed model for predicting land loss was the 10-year time depth and 20-year time horizon model. The 10-year time depth and 20-year time horizon model was also most accurate for agricultural, forested, and inland waterbody land use/covers loss prediction. We strongly believe that our results will build a foundation for future research studying the dynamics of coastal and deltaic environments.
  • Pandemic Simulator: An Agent-Based Framework with Human Behavior Modeling for Pandemic-Impact Assessment to Build Sustainable Communities
    Weligampola, Harshana; Ramanayake, Lakshitha; Ranasinghe, Yasiru; Ilangarathna, Gayanthi; Senarath, Neranjan; Samarakoon, Bhagya; Godaliyadda, Roshan; Herath, Vijitha; Ekanayake, Parakrama; Ekanayake, Janaka; Maheswaran, Muthucumaru; Theminimulle, Sandya; Rathnayake, Anuruddhika; Dharmaratne, Samath; Pinnawala, Mallika; Yatigammana, Sakunthala; Tilakaratne, Ganga (MDPI, 2023-07-17)
    It is crucial to immediately curb the spread of a disease once an outbreak is identified in a pandemic. An agent-based simulator will enable policymakers to evaluate the effectiveness of different hypothetical strategies and policies with a higher level of granularity. This will allow them to identify vulnerabilities and asses the threat level more effectively, which in turn can be used to build resilience within the community against a pandemic. This study proposes a PanDemic SIMulator (PDSIM), which is capable of modeling complex environments while simulating realistic human motion patterns. The ability of the PDSIM to track the infection propagation patterns, contact paths, places visited, characteristics of people, vaccination, and testing information of the population allows the user to check the efficacy of different containment strategies and testing protocols. The results obtained based on the case studies of COVID-19 are used to validate the proposed model. However, they are highly extendable to all pandemics in general, enabling robust planning for more sustainable communities.
  • Long term temporal trends in synoptic-scale weather conditions favoring significant tornado occurrence over the central United States
    Elkhouly, Mohamed; Zick, Stephanie E.; Ferreira, Marco A. R. (PLOS, 2023-02-22)
    We perform a statistical climatological study of the synoptic- to meso-scale weather conditions favoring significant tornado occurrence to empirically investigate the existence of long term temporal trends. To identify environments that favor tornadoes, we apply an empirical orthogonal function (EOF) analysis to temperature, relative humidity, and winds from the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) dataset. We consider MERRA-2 data and tornado data from 1980 to 2017 over four adjacent study regions that span the Central, Midwestern, and Southeastern United States. To identify which EOFs are related to significant tornado occurrence, we fit two separate groups of logistic regression models. The first group (LEOF models) estimates the probability of occurrence of a significant tornado day (EF2-EF5) within each region. The second group (IEOF models) classifies the intensity of tornadic days either as strong (EF3-EF5) or weak (EF1-EF2). When compared to approaches using proxies such as convective available potential energy, our EOF approach is advantageous for two main reasons: first, the EOF approach allows for the discovery of important synoptic- to mesoscale variables previously not considered in the tornado science literature; second, proxy-based analyses may not capture important aspects of three-dimensional atmospheric conditions represented by the EOFs. Indeed, one of our main novel findings is the importance of a stratospheric forcing mode on occurrence of significant tornadoes. Other important novel findings are the existence of long-term temporal trends in the stratospheric forcing mode, in a dry line mode, and in an ageostrophic circulation mode related to the jet stream configuration. A relative risk analysis also indicates that changes in stratospheric forcings are partially or completely offsetting increased tornado risk associated with the dry line mode, except in the eastern Midwest region where tornado risk is increasing.
  • Evaluating the Role of Land Surface Moisture in Generating Asymmetrical Precipitation during the Landfall of Hurricane Florence (2018)
    Rosenthal, Lindsey; Zick, Stephanie E. (MDPI, 2023-04-30)
    This study focuses on the role of land surface moisture in generating asymmetrical precipitation surrounding a nearly stationary Hurricane Florence (2018) during landfall. Previous idealized modeling studies have suggested that atmospheric stability varies surrounding a tropical cyclone (TC) during landfall, with the atmosphere destabilizing off-shore and stabilizing on-shore. However, this finding has not been studied using a real modeling framework. Here, we produce high-resolution numerical simulations to examine the variations in precipitation and atmospheric stability surrounding Hurricane Florence. In addition to a control simulation (CTRL), two additional simulations are performed by altering the land surface cover to be moister (WETX) or drier (DRYX) compared with the CTRL. In the experiment, the altered land surface affects the equivalent potential temperature within the boundary layer. Due to changes in moisture, there are consistent but minor impacts on the spatial patterns of moist static instability. This study found that rainbands in the inner core and distant rainband regions responded differently to changes in land surface moisture. Within the inner core region of the TC, WETX produced more precipitation that was more symmetrical compared with DRYX. In DRYX, there was increased moist static instability in the outer rainband region over water and decreased moist static instability in the outer rainband region over land, which may have contributed to the enhanced precipitation asymmetries. Still, both experiments produced asymmetrical precipitation distributions, suggesting that alterations to land surface moisture had a minor impact on the precipitation asymmetries in Hurricane Florence. We conclude that precipitation asymmetries are primarily dynamically driven by weak to moderate vertical wind shear and asymmetries in moisture flux convergence.
  • Capturing complexity: Environmental change and relocation in the North Slope Borough, Alaska
    Garland, Anne; Bukvic, Anamaria; Maton-Mosurska, Anuszka (Elsevier, 2022-12)
    This paper explores the knowledge, attitudes, and behaviors about emerging hazards, environmental change, and relocation among community groups in Utqiaġvik (Barrow) of the North Slope Borough (NSB), Alaska. This region has been experiencing accelerating erosion and warmer temperatures, permafrost thawing, more frequent and intense storm surges, and increased maritime traffic and extractive industries with ice loss, with direct or cascading effects on the mixed ethnic and indigenous communities. This paper used engagement activities (Participatory Applied Theater) and qualitative approaches (focus groups) during three consecutive summers 2016-2018 to evaluate the risk perceptions and interpretations towards coastal changes and relocation as an adaptive response in this U.S. strategic yet remote location. Each focus group session started with risk ranking activities about regional hazards to assess knowledge and perceptions of risk, followed by an interactive script reading of an Iñupiat disaster legend to facilitate discussion about risk reduction options and engagement with the survey questions. Focus groups were audio recorded, transcribed, and analyzed using qualitative data analysis software Nvivo and a hybrid coding strategy. Results indicate that relocation is considered by some participants but is not planned for nor implemented by community groups, families, or the local government to reduce the hazard risks. However, widespread recognition of accelerated hazards and environmental changes, and the need for adaptation could lead to consideration of relocation in the future. This study provides a case of disaster risk reduction in a remote place with unique place-specific characteristics (e.g., particular forms of subsistence, corporate monopolies, Traditional Ecological Knowledge, and social organizations), but also shaped by significant external influences, accompanied by a changing landscape of risk from the slow and rapid onset of environmental changes.
  • A Public Participation GIS for Geodiversity and Geosystem Services Mapping in a Mountain Environment: A Case from Grayson County, Virginia, U.S.A.
    Stanley, Kyler B.; Resler, Lynn M.; Carstensen, Lawrence W. (MDPI, 2023-04-05)
    Geodiversity and geosystem services are essential concepts for conservation efforts in mountain regions. Approaches that integrate both natural and human dimensions of mountain abiotic nature are best suited for this purpose; however, geodiversity research and associated conservation efforts along this vein are still developing. Here, we explore the potential of a public participation GIS, which integrates qualitative surveys with quantitative geodiversity information, to assess possible relationships between geodiversity and geosystem services for Grayson County, Virginia, U.S.A. Specifically, we: (1) used a geodiversity index to model geodiversity for the study area, (2) used a public participation GIS to map geosystem services markers, and (3) visualized geodiversity–geosystem services hotspots to uncover potential relationships between geodiversity and geosystem services values. Participants placed 318 markers, most frequently representing aesthetic (32%), artistic (22%), and educational (15%) geosystem services values. The majority (55%) of these markers corresponded to low and very low quantitative geodiversity index scores. Geosystem services value markers were clustered around population centers and protected areas. Although quantitative geodiversity measures are often used to identify and prioritize areas for conservation, our results suggest that locations valued by respondents would be missed using quantitative metrics alone. This research thus supports the need for holistic approaches incorporating place values to conserve and best understand relationships between people and abiotic aspects of mountain landscapes.
  • Reconstructing Hurricane Sally’s (2020) maximum-wind field with tree-lean azimuths
    Swift, Troy P.; Kennedy, Lisa M.; Zick, Stephanie E. (2022-04-08)
  • Community-engaged heat resilience planning: Lessons from a youth smart city STEM program
    Lim, Theodore C.; Wilson, Bev; Grohs, Jacob R.; Pingel, Thomas (Elsevier, 2022-10-01)
    While recognition of the dangers of extreme heat in cities continues to grow, heat resilience remains a relatively new area of urban planning. One barrier to the creation and successful implementation of neighborhood-scale heat resilience plans has been a lack of reliable strategies for resident engagement. In this research, the authors designed a two-week summer STEM module for youth ages 12 to 14 in Roanoke, Virginia in the Southeastern United States. Participants collected and analyzed temperature and thermal comfort data of varying types, including from infrared thermal cameras and point sensors, handheld weather sensors, drones, and satellites, vehicle traverses, and student peer interviews. Based on primary data gathered during the program, we offer insights that may assist planners seeking to engage residents in neighborhood-scale heat resilience planning efforts. These lessons include recognizing: (1) the problem of heat in neighborhoods and the social justice aspects of heat distribution may not be immediately apparent to residents; (2) a need to shift perceived responsibility of heat exposure from the personal and home-based to include the social and landscape-based; (3) the inextricability of solutions for thermal comfort from general issues of safety and comfort in neighborhoods; and (4) that smart city technologies and high resolution data are helpful “hooks” to engagement, but may be insufficient for shifting perception of heat as something that can be mitigated through decisions about the built environment.
  • Chapter 4. Value expression in decision-making
    Baird, Timothy D. (2022-07-09)
  • Assessment of Spatio-Temporal Empirical Forecasting Performance of Future Shoreline Positions
    Islam, Md Sariful; Crawford, Thomas W. (MDPI, 2022-12-16)
    Coasts and coastlines in many parts of the world are highly dynamic in nature, where large changes in the shoreline position can occur due to natural and anthropogenic influences. The prediction of future shoreline positions is of great importance in the better planning and management of coastal areas. With an aim to assess the different methods of prediction, this study investigates the performance of future shoreline position predictions by quantifying how prediction performance varies depending on the time depths of input historical shoreline data and the time horizons of predicted shorelines. Multi-temporal Landsat imagery, from 1988 to 2021, was used to quantify the rates of shoreline movement for different time period. Predictions using the simple extrapolation of the end point rate (EPR), linear regression rate (LRR), weighted linear regression rate (WLR), and the Kalman filter method were used to predict future shoreline positions. Root mean square error (RMSE) was used to assess prediction accuracies. For time depth, our results revealed that the higher the number of shorelines used in calculating and predicting shoreline change rates the better predictive performance was yielded. For the time horizon, prediction accuracies were substantially higher for the immediate future years (138 m/year) compared to the more distant future (152 m/year). Our results also demonstrated that the forecast performance varied temporally and spatially by time period and region. Though the study area is located in coastal Bangladesh, this study has the potential for forecasting applications to other deltas and vulnerable shorelines globally.
  • Moving from interdisciplinary to convergent research across geoscience and social sciences: challenges and strategies
    Finn, Donovan; Mandli, Kyle; Bukvic, Anamaria; Davis, Christopher A.; Haacker, Rebecca; Morss, Rebecca E.; O'Lenick, Cassandra R.; Wilhelmi, Olga; Wong-Parodi, Gabrielle; Merdjanoff, Alexis A.; Mayo, Talea L. (IOP Publishing, 2022-06)
  • Job Accessibility as a Lens for Understanding the Urban Structure of Colonial Cities: A Digital Humanities Study of the Colonial Seoul in the 1930s Using GIS
    Kim, Youngjoon; Kim, Junghwan; Ha, Hui Jeong; Nakajima, Naoto; Lee, Jinhyung (MDPI, 2022-12-08)
    This study examined the urban structure of colonial Seoul in the 1930s, the capital city of Korea under the rule of the Japanese empire, by adopting quantitative geographical methods. We utilized a job accessibility index to operationalize the urban structure. We also used geographic information science (GIScience) analysis tools to digitize neighborhood-level sociodemographic and parcel-level business location information from historical materials. The results illustrated several findings that were not revealed by previous studies based on qualitative approaches. First, transit-based job accessibility (13.392) is significantly higher (p < 0.001) than walk-based job accessibility (10.575). Second, there is a Γ-shaped area with higher job accessibility, including the central part of colonial Seoul. Third, Japanese-dominant neighborhoods had significantly (p < 0.001) higher transit-based (27.156) job accessibility than Korean-dominant neighborhoods (9.319). Fourth, transit-based job accessibility is not significantly correlated with the unemployment rate overall. Although colonial Seoul was the seventh-largest city of the Japanese empire, few practical planning actions were taken to resolve urban issues, unlike the other large cities in mainland Japan.