Lotka-Volterra predator-prey model with periodically varying carrying capacity
dc.contributor.author | Swailem, Mohamed | en |
dc.contributor.author | Tauber, Uwe C. | en |
dc.date.accessioned | 2023-11-20T13:15:17Z | en |
dc.date.available | 2023-11-20T13:15:17Z | en |
dc.date.issued | 2023-06-30 | en |
dc.date.updated | 2023-11-18T23:41:24Z | en |
dc.description.abstract | We study the stochastic spatial Lotka-Volterra model for predator-prey interaction subject to a periodically varying carrying capacity. The Lotka-Volterra model with on-site lattice occupation restrictions (i.e., finite local carrying capacity) that represent finite food resources for the prey population exhibits a continuous active-to-absorbing phase transition. The active phase is sustained by the existence of spatiotemporal patterns in the form of pursuit and evasion waves. Monte Carlo simulations on a two-dimensional lattice are utilized to investigate the effect of seasonal variations of the environment on species coexistence. The results of our simulations are also compared to a mean-field analysis in order to specifically delineate the impact of stochastic fluctuations and spatial correlations. We find that the parameter region of predator and prey coexistence is enlarged relative to the stationary situation when the carrying capacity varies periodically. The (quasi-)stationary regime of our periodically varying Lotka-Volterra predator-prey system shows qualitative agreement between the stochastic model and the mean-field approximation. However, under periodic carrying capacity-switching environments, the mean-field rate equations predict period-doubling scenarios that are washed out by internal reaction noise in the stochastic lattice model. Utilizing visual representations of the lattice simulations and dynamical correlation functions, we study how the pursuit and evasion waves are affected by ensuing resonance effects. Correlation function measurements indicate a time delay in the response of the system to sudden changes in the environment. Resonance features are observed in our simulations that cause prolonged persistent spatial correlations. Different effective static environments are explored in the extreme limits of fast and slow periodic switching. The analysis of the mean-field equations in the fast-switching regime enables a semiquantitative description of the (quasi-)stationary state. | en |
dc.description.version | Accepted version | en |
dc.format.extent | 16 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | ARTN 064144 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1103/PhysRevE.107.064144 | en |
dc.identifier.eissn | 2470-0053 | en |
dc.identifier.issn | 2470-0045 | en |
dc.identifier.issue | 6 | en |
dc.identifier.orcid | Tauber, Uwe [0000-0001-7854-2254] | en |
dc.identifier.pmid | 37464668 | en |
dc.identifier.uri | http://hdl.handle.net/10919/116676 | en |
dc.identifier.volume | 107 | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/37464668 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Physics, Fluids & Plasmas | en |
dc.subject | Physics, Mathematical | en |
dc.subject | Physics | en |
dc.subject | LATTICE-GAS MODEL | en |
dc.subject | OSCILLATORY BEHAVIOR | en |
dc.subject | PHASE-TRANSITION | en |
dc.subject | POPULATION | en |
dc.subject | FLUCTUATIONS | en |
dc.subject | COMPETITION | en |
dc.subject | STABILITY | en |
dc.subject | EQUATIONS | en |
dc.subject | DYNAMICS | en |
dc.subject | SYSTEMS | en |
dc.subject | 51 Physical Sciences | en |
dc.subject | 5103 Classical Physics | en |
dc.subject | 40 Engineering | en |
dc.subject | 49 Mathematical sciences | en |
dc.title | Lotka-Volterra predator-prey model with periodically varying carrying capacity | en |
dc.title.serial | Physical Review E | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
dcterms.dateAccepted | 2023-06-12 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/Physics | en |
pubs.organisational-group | /Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 23_30_lvpvcc.pdf
- Size:
- 3.45 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version