Enhancing Safety in Critical Monitoring Systems: Investigating the Roles of Human Error, Fatigue, and Organizational Learning in Socio-Technical Environments

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Modern complex safety-critical socio-technical systems (STSs) operate in an environment that requires high levels of human-machine interaction. Given the potential for catastrophic events , understanding human errors is a critical research area spanning disciplines such as management science, cognitive engineering, resilience engineering, and systems theory. However, a research gap remains when researching how errors impact system performance from a systemic perspective.

This dissertation employs a systematic methodology and develops models that explore the relationship between errors and system performance, considering both macro-organizational and micro-worker perspectives. In Essay 1, the focus is on how firms respond to serious errors (catastrophic events), by exploring the oscillation behavior associated with the organizational learning and forgetting theory. The proposed simulation model contributes to the organizational science literature with a comprehensive approach that assesses the firm's response time to "serious" errors when the firm has a focus on safety with established safety thresholds. All of these considerations have subsequent impact on future performance.

Essay 2 explores the relationship between safety-critical system's workers' workload, human error, and automation reliance for the Belgian railway traffic control center. Key findings include a positive relationship between traffic controller performance and workload, and an inverted U-shaped relationship with automation usage. This research offers new insights into the effects of cognitive workload and automation reliance in safety-critical STSs. Essay 3 introduces a calibrated System Dynamics model, informed by empirical data and existing theories on workload suboptimality. This essay contributes to the managerial understanding of workload management, particularly the feedback mechanism between operators' workload and human errors, which is driven by overload and underload thresholds. The model serves as a practical tool for managerial practitioners to estimate the likelihood of human errors based on workload distributions.

Overall, this dissertation presents an interdisciplinary and pragmatic approach, blending theoretical and empirical methodologies. Its broad impacts extend across management science, cognitive engineering, and resilience engineering, contributing significantly to the understanding and management of safety-critical socio-technical systems.



safety-critical systems, system dynamics, mental workload, human error, socio-technical systems, decision-making