Discrete Tire Model Application for Vehicle Dynamics Performance Enhancement

dc.contributor.authorSiramdasu, Yaswanthen
dc.contributor.committeechairTaheri, Saieden
dc.contributor.committeememberAhmadian, Mehdien
dc.contributor.committeememberFurukawa, Tomonarien
dc.contributor.committeememberHajj, Muhammad R.en
dc.contributor.committeememberSandu, Corinaen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2017-01-19T07:00:25Zen
dc.date.available2017-01-19T07:00:25Zen
dc.date.issued2015-07-28en
dc.description.abstractTires are the most influential component of the vehicle as they constitute the only contact between the vehicle and the road and have to generate and transmit forces necessary for the driver to control the vehicle. The demand for the tire models are increasing due to the need to study the variations of force generation mechanisms due to various variables such as load, pressure, speed, and road surface irregularities. Another need from the vehicle manufactures is the study of potential incompatibilities associated with safety systems such as Anti-lock Braking System (ABS) and Electronic Stability Control (ESC) and tires. For vehicle dynamic simulations pertaining to the design of safety systems such as ABS, ESC and ride controllers, an accurate and computationally efficient tire model is required. As these control algorithms become more advanced, they require accurate and extended validity in the range of frequencies required to cover dynamic response due to short wavelength road disturbances, braking and steering torque variations. Major thrust has been provided by the tire industry to develop simulation models that accurately predict the dynamic response of tires without the use of computationally intensive tools such as FEA. The objectives of this research are • To develop, implement and validate a rigid ring tire model and a simulation tool to assist both tire designers and the automotive industry in analyzing the effects of tire belt vibrations, road disturbances, and high frequency brake and steering torque variations on the handling, braking, and ride performances of the vehicle. • To further enhance the tire model by considering dynamic stiffness changes and temperature dependent friction properties. • To develop, and implement novel control algorithms for braking, stability, and ride performance improvements of the vehicleen
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:5771en
dc.identifier.urihttp://hdl.handle.net/10919/74394en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectTire Modelingen
dc.subjectABSen
dc.subjectBrakingen
dc.subjectHandlingen
dc.subjectRideen
dc.subjectRigid Ringen
dc.subjectEnvelopingen
dc.subjectTire Vehicle interactionsen
dc.subjectPerformance metricsen
dc.subjectUneven roaden
dc.titleDiscrete Tire Model Application for Vehicle Dynamics Performance Enhancementen
dc.typeDissertationen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Siramdasu_Y_D_2015.pdf
Size:
16.57 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Siramdasu_Y_D_2015_support_1.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Description:
Supporting documents