Scholarly Works, Center for Environmental Applications of Remote Sensing (CEARS)
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Center for Environmental Applications of Remote Sensing (CEARS) by Author "Coulston, John W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- On-the-Fly Massively Multitemporal Change Detection Using Statistical Quality Control Charts and Landsat DataBrooks, Evan B.; Wynne, Randolph H.; Thomas, Valerie A.; Blinn, Christine E.; Coulston, John W. (Institute of Electrical and Electronics Engineers (IEEE), 2014-06)One challenge to implementing spectral change detection algorithms using multitemporal Landsat data is that key dates and periods are often missing from the record due to weather disturbances and lapses in continuous coverage. This paper presents a method that utilizes residuals from harmonic regression over years of Landsat data, in conjunction with statistical quality control charts, to signal subtle disturbances in vegetative cover. These charts are able to detect changes from both deforestation and subtler forest degradation and thinning. First, harmonic regression residuals are computed after fitting models to interannual training data. These residual time series are then subjected to Shewhart X-bar control charts and exponentially weighted moving average charts. The Shewhart X-bar charts are also utilized in the algorithm to generate a data-driven cloud filter, effectively removing clouds and cloud shadows on a location-specific basis. Disturbed pixels are indicated when the charts signal a deviation from data-driven control limits. The methods are applied to a collection of loblolly pine (Pinus taeda) stands in Alabama, USA. The results are compared with stands for which known thinning has occurred at known times. The method yielded an overall accuracy of 85%, with the particular result that it provided afforestation/deforestation maps on a per-image basis, producing new maps with each successive incorporated image. These maps matched very well with observed changes in aerial photography over the test period. Accordingly, the method is highly recommended for on-the-fly change detection, for changes in both land use and land management within a given land use.
- Producing a Canopy Height Map Over a Large Region Using Heterogeneous LIDAR DatasetsGopalakrishnan, Ranjith; Thomas, Valerie A.; Coulston, John W.; Wynne, Randolph H. (2014)Accurate and unbiased wall-to-wall canopy height maps for large regions are useful to forest scientists and managers for several reasons such as carbon accounting and wildfire fuel-load monitoring. Airborne lidar is establishing itself as the most promising technology for this. However, mapping large areas often involves using lidar data from different projects executed by different agencies, involving varying acquisition dates, sensors, pulse densities, etc. In this work, we address the important question of how accurately one can predict and model canopy heights over large areas of the Southeastern US using a heterogeneous lidar datasets (with more than 90 separate lidar projects). A unique aspect of this effort is the use of extensive and robust field data from the Forest Inventory and Analysis (FIA) program of the US Forest Service. We construct a simple linear model to predict canopy height at plots from distributional lidar metrics. Preliminary results are quite promising: over all lidar projects, we observe a correlation of 81.8% between the 95th percentile of lidar heights and field-measured height, with an RMSE of 3.66 meters (n=3078). We further estimated that ~1.21 m (33%) of this RMSE could be attributed to co-registration inaccuracies. The RMSE of 3.66 m compares quite well to previous efforts that used spaceborne lidar sensors to estimate canopy heights over large regions. We also identify and quantify the importance of several factors (like point density, the predominance of hardwoods or softwood) that also influence the efficacy of our prediction model.