VTechWorks

VTechWorks provides global access to Virginia Tech scholarship, including journal articles, books, theses, dissertations, conference papers, slide presentations, technical reports, working papers, administrative documents, videos, images, and more by faculty, students, and staff. Faculty can deposit items to VTechWorks from Elements, including journal articles covered by the University open access policy. Email vtechworks@vt.edu for help.


 
Open Access Policy

Open Access Policy

Virginia Tech's open access policy enables researchers to deposit the accepted version of scholarly articles with no embargo.


Theses and Dissertations

Theses and Dissertations

Virginia Tech was first in the world to require ETDs in 1997, and continues to add scans of older theses and dissertations.


Open Textbooks

Open Textbooks

More than 40 freely available and openly licensed textbooks are among our most downloaded items.


Recent Submissions

'New' Media: Decolonial Opportunities or Digital Colonialism?
Veracini, Lorenzo; Weaver-Hightower, Rebecca (MDPI, 2023-12-21)
Can one colonise or liberate cyberspace, space that is not actually space [...]
SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice
Pavan, María Florencia; Bok, Marina; Betanzos San Juan, Rafael; Malito, Juan Pablo; Marcoppido, Gisela Ariana; Franco, Diego Rafael; Militelo, Daniela Ayelen; Schammas, Juan Manuel; Bari, Sara Elizabeth; Stone, William; López, Krisangel; Porier, Danielle LaBrie; Muller, John Anthony; Auguste, Albert Jonathan; Yuan, Lijuan; Wigdorovitz, Andrés; Parreño, Viviana Gladys; Ibañez, Lorena Itat (MDPI, 2024-01-25)
Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.
A Mechanistic Model of Perceptual Binding Predicts That Binding Mechanism Is Robust against Noise
Kraikivski, Pavel (MDPI, 2024-01-31)
The concept of the brain’s own time and space is central to many models and theories that aim to explain how the brain generates consciousness. For example, the temporo-spatial theory of consciousness postulates that the brain implements its own inner time and space for conscious processing of the outside world. Furthermore, our perception and cognition of time and space can be different from actual time and space. This study presents a mechanistic model of mutually connected processes that encode phenomenal representations of space and time. The model is used to elaborate the binding mechanism between two sets of processes representing internal space and time, respectively. Further, a stochastic version of the model is developed to investigate the interplay between binding strength and noise. Spectral entropy is used to characterize noise effects on the systems of interacting processes when the binding strength between them is varied. The stochastic modeling results reveal that the spectral entropy values for strongly bound systems are similar to those for weakly bound or even decoupled systems. Thus, the analysis performed in this study allows us to conclude that the binding mechanism is noise-resilient.
A Scoping Review of Food Systems Governance Frameworks and Models to Develop a Typology for Social Change Movements to Transform Food Systems for People and Planetary Health
Kraak, Vivica; Niewolny, Kimberly L. (MDPI, 2024-02-09)
Effective governance is essential to transform food systems and achieve the United Nations (UN) Sustainable Development Goals 2030. Different political ideologies and paradigms inhibit or drive social change movements. This study examined how food systems governance has been described. Thereafter, we reviewed graphic frameworks and models to develop a typology for civil society actors to catalyze social change movements to transform food systems for people and the planet. The scoping review involved (1) formulating research questions; (2) developing a search strategy to identify evidence from four English-language electronic databases and reports, 2010–2023; and (3–4) selecting, analyzing, and synthesizing evidence into a narrative review. Results yielded 5715 records, and 36 sources were selected that described and depicted graphic frameworks and models examined for purpose, scale, political ideology, paradigm, discourse, principles, governance, and democracy. Evidence was used to develop a graphic food systems governance typology with distinct political ideologies (i.e., neoliberal, reformist, progressive, radical); paradigms (i.e., maintain, reform, transition, transform); discourses (i.e., food enterprise, food security, food justice, food sovereignty); types of governance (i.e., multistakeholder, shared, self); and democracy (i.e., representative, participatory, deliberative). This proof-of-concept typology could be applied to examine how change agents use advocacy and activism to strengthen governance for sustainable diets, regenerative food systems, and planetary health.
Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats
Bertotto, Luísa B.; Lampson-Stixrud, Dolly; Sinha, Anushka; Rohani, Nicki K.; Myer, Isabella; Zorrilla, Eric P. (MDPI, 2024-02-09)
Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5–6/grp) and post-CIE (n = 6–8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking.