Scholarly Works, Center for Environmental Applications of Remote Sensing (CEARS)
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Center for Environmental Applications of Remote Sensing (CEARS) by Author "Shao, Yang"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Accuracy Assessment of the NLCD 2006 Impervious Surface for Roanoke and BlacksburgZhao, Suwen; Feng, Leyang; Shao, Yang; Dymond, Randel L. (2014)Impervious surface map products are important for the study of urbanization, urban heat island effects, watershed hydrology, water pollution, and ecosystem services in general. At the conterminous US scale, impervious surfaces are mapped for 2001 and 2006. The accuracy of the 2006 NLCD impervious surface, however, has not been thoroughly examined, especially for small and intermediate size cities (e.g., regional city). In this study, we selected two transects in two cities and visually interpreted aerial photo to develop impervious surface reference maps. We then compared percent impervious surface of the NLCD and aerial photo-interpreted reference maps. The comparison was conducted at 90m resolution to minimize the errors in image registration. Overall, we found that the 2006 NLCD impervious surface matched well with our reference data, although slight skewness at two extremes is present. The R² and RMSE statistics improved when the two datasets are compared at coarse aggregation levels (e.g. 180m).
- Analysis of Crop Phenology Using Time-Series MODIS Data and Climate DataRen, Jie; Campbell, James B. Jr.; Shao, Yang; Thomas, R. Quinn (2014)Understanding crop phenology is fundamental to agricultural production, management, planning and decision-making. In the continental United States, key phenological stages are strongly influenced by meteorological and climatological conditions. This study used remote sensing satellite data and climate data to determine key phenological states of corn and soybean and evaluated estimates of these phenological parameters. A time series of Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composites from 2001 to 2013 was analyzed with the TIMESAT program to automatically retrieve key phenological stages such as the start of season (emergence), peak (heading) and end of season (maturity). These stages were simulated with 6 hourly temperature data from 1980 to 2013 on the basis of crop model under the Community Land Model (CLM) (version 4.5). With these two methods, planting date, heading date, harvesting date, and length of growing season from 2001 to 2013 were determined and compared. There should be a good correlation between estimates derived from satellites and estimates produced with the climate data based on the crop model.
- Landscape Dynamics on the Island of La Gonave, Haiti, 1990-2010White, Justin H.; Shao, Yang; Kennedy, Lisa M.; Campbell, James B. Jr. (MDPI, 2013-09-16)The island of La Gonave lies northwest of Port-au-Prince and is representative of the subsistence Haitian lifestyle. Little is known about the land cover changes and conversion rates on La Gonave. Using Landsat images from 1990 to 2010, this research investigates landscape dynamics through image classification, change detection, and landscape pattern analysis. Five land cover classes were considered: Agriculture, Forest/Dense Vegetation (DV), Shrub, Barren/Eroded, and Nonforested Wetlands. Overall image classification accuracy was 87%. Results of land cover change analysis show that all major land cover types experienced substantial changes from 1990 to 2010. The area percent change was _39.7, _22.7, 87.4, and _7.0 for Agriculture, Forest/Dense Vegetation, Shrub, and Barren/Eroded. Landscape pattern analysis illustrated the encroachment of Shrub cover in core Forest/DV patches and the decline of Agricultural patch integrity. Agricultural abandonment, deforestation, and forest regrowth combined to generate a dynamic island landscape, resulting in higher levels of land cover fragmentation.