Institute for Creativity, Arts, and Technology (ICAT)
Permanent URI for this community
The Institute for Creativity, Arts, and Technology is uniquely partnered with the Center for the Arts at Virginia Tech. By forging a pathway between trans-disciplinary research and art, educational innovation, and scientific and commercial discovery, the institute works to foster the creative process to create new possibilities for exploration and expression through learning, discovery, and engagement.
Browse
Browsing Institute for Creativity, Arts, and Technology (ICAT) by Author "Bukvic, Ivica Ico"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
- 3D Time-Based Aural Data Representation Using D⁴ Library’s Layer Based Amplitude Panning AlgorithmBukvic, Ivica Ico (Georgia Institute of Technology, 2016-07)The following paper introduces a new Layer Based Amplitude Panning algorithm and supporting D⁴ library of rapid prototyping tools for the 3D time-based data representation using sound. The algorithm is designed to scale and support a broad array of configurations, with particular focus on High Density Loudspeaker Arrays (HDLAs). The supporting rapid prototyping tools are designed to leverage oculocentric strategies to importing, editing, and rendering data, offering an array of innovative approaches to spatial data editing and representation through the use of sound in HDLA scenarios. The ensuing D⁴ ecosystem aims to address the shortcomings of existing approaches to spatial aural representation of data, offers unique opportunities for furthering research in the spatial data audification and sonification, as well as transportable and scalable spatial media creation and production.
- Aegis Audio Engine: Integrating a Real-Time Analog Signal Processing, Pattern Recognition, and a Procedural Soundtrack in a Live Twelve-Perfomer Spectacle With Crowd ParticipationBukvic, Ivica Ico; Matthews, Michael (Georgia Institute of Technology, 2015-07)In the following paper we present Aegis: a procedural networked soundtrack engine driven by real-time analog signal analysis and pattern recognition. Aegis was originally conceived as part of Drummer Game, a game-performancespectacle hybrid research project focusing on the depiction of a battle portrayed using terracotta soldiers. In it, each of the twelve cohorts—divided into two armies of six—are led by a drummer-performer who issues commands by accurately drumming precomposed rhythmic patterns on an original Chinese war drum. The ensuing spectacle is envisioned to also accommodate large audience participation whose input determines the morale of the two armies. An analog signal analyzer utilizes efficient pattern recognition to decipher the desired action and feed it both into the game and the soundtrack engine. The soundtrack engine then uses this action, as well as messages from the gaming simulation, to determine the most appropriate soundtrack parameters while ensuring minimal repetition and seamless transitions between various clips that account for tempo, meter, and key changes. The ensuing simulation offers a comprehensive system for pattern-driven input, holistic situation assessment, and a soundtrack engine that aims to generate a seamless musical experience without having to resort to cross-fades and other simplistic transitions that tend to disrupt a soundtrack’s continuity.
- Cinemacraft: Immersive Live Machinima as an Empathetic Musical Storytelling PlatformNarayanan, Siddhart; Bukvic, Ivica Ico (University of Michigan, 2016)In the following paper we present Cinemacraft, a technology-mediated immersive machinima platform for collaborative performance and musical human-computer interaction. To achieve this, Cinemacraft innovates upon a reverse-engineered version of Minecraft, offering a unique collection of live machinima production tools and a newly introduced Kinect HD module that allows for embodied interaction, including posture, arm movement, facial expressions, and a lip syncing based on captured voice input. The result is a malleable and accessible sensory fusion platform capable of delivering compelling live immersive and empathetic musical storytelling that through the use of low fidelity avatars also successfully sidesteps the uncanny valley.
- Introducing a K-12 Mechatronic NIME KitTsoukalas, Kyriakos D.; Bukvic, Ivica Ico (ACM, 2018-06)The following paper introduces a new mechatronic NIME kit that uses new additions to the Pd-L2Ork visual programing environment and its K-12 learning module. It is designed to facilitate the creation of simple mechatronics systems for physical sound production in K- 12 and production scenarios. The new set of objects builds on the existing support for the Raspberry Pi platform to also include the use of electric actuators via the microcomputer’s GPIO system. Moreover, we discuss implications of the newly introduced kit in the creative and K-12 education scenarios by sharing observations from a series of pilot workshops, with particular focus on using mechatronic NIMEs as a catalyst for the development of programing skills.
- Introducing D⁴: An Interactive 3D Audio Rapid Prototyping and Transportable Rendering Environment Using High Density Loudspeaker ArraysBukvic, Ivica Ico (University of Michigan, 2016)With a growing number of multimedia venues and research spaces equipped with High Density Loudspeaker Arrays, there is a need for an integrative 3D audio spatialization system that offers both a scalable spatialization algorithm and a battery of supporting rapid prototyping tools for time-based editing, rendering, and interactive low-latency manipulation. D⁴ library aims to assist this newfound whitespace by introducing a Layer Based Amplitude Panning algorithm and a collection of rapid prototyping tools for the 3D time-based audio spatialization and data sonification. The ensuing ecosystem is designed to be transportable and scalable. It supports a broad array of configurations, from monophonic to as many as hardware can handle. D⁴’s rapid prototyping tools leverage oculocentric strategies to importing and spatially rendering multidimensional data and offer an array of new approaches to time-based spatial parameter manipulation and representation. The following paper presents unique affordances of D⁴’s rapid prototyping tools.
- Introducing Locus: a NIME for Immersive Exocentric Aural EnvironmentsSardana, Disha; Joo, Woohun; Bukvic, Ivica Ico; Earle, Gregory D. (ACM, 2019-06)Locus is a NIME designed specifically for an interactive, immersive high density loudspeaker array environment. The system is based on a pointing mechanism to interact with a sound scene comprising 128 speakers. Users can point anywhere to interact with the system, and the spatial interaction utilizes motion capture, so it does not require a screen. Instead it is completely controlled via hand gestures using a glove that is populated with motion-tracking markers. The main purpose of this system is to offer intuitive physical interaction with the perimeter-based spatial sound sources. Further, its goal is to minimize user-worn technology and thereby enhance freedom of motion by utilizing environmental sensing devices, such as motion capture cameras or infrared sensors. The ensuing creativity enabling technology is applicable to a broad array of possible scenarios, from researching limits of human spatial hearing perception to facilitating learning and artistic performances, including dance. Below we describe our NIME design and implementation, its preliminary assessment, and offer a Unity-based toolkit to facilitate its broader deployment and adoption.
- L2OrkMote: Reimagining a Low-Cost Wearable Controller for a Live Gesture-Centric Music PerformanceTsoukalas, Kyriakos D.; Kubalak, Joseph R.; Bukvic, Ivica Ico (ACM, 2018-06)Laptop orchestras create music, although digitally produced, in a collaborative live performance not unlike a traditional orchestra. The recent increase in interest and investment in this style of music creation has paved the way for novel methods for musicians to create and interact with music. To this end, a number of nontraditional instruments have been constructed that enable musicians to control sound production beyond pitch and volume, integrating filtering, musical effects, etc. Wii Remotes (WiiMotes) have seen heavy use in maker communities, including laptop orchestras, for their robust sensor array and low cost. The placement of sensors and the form factor of the device itself are suited for video games, not necessarily live music creation. In this paper, the authors present a new controller design, based on the WiiMote hardware platform, to address usability in gesture-centric music performance. Based on the pilot-study data, the new controller offers unrestricted two-hand gesture production, smaller footprint, and lower muscle strain.
- Lantern Field: Exploring Participatory Design of a Communal, Spatially Responsive InstallationBortz, Brennon; Ishida, Aki; Bukvic, Ivica Ico; Knapp, R. Benjamin (NIME, 2013-05)Lantern Field is a communal, site-specific installation that takes shape as a spatially responsive audio-visual field. The public participates in the creation of the installation, resulting in shared ownership of the work between both the artists and participants. Furthermore, the installation takes new shape in each realization, both to incorporate the constraints and affordances of each specific site, as well as to address the lessons learned from the previous iteration. This paper describes the development and execution of Lantern Field over its most recent version, with an eye toward the next iteration at the Smithsonian's Freer Gallery during the 2013 National Cherry Blossom Festival inWashington, D.C.
- New Interfaces for Spatial Musical ExpressionBukvic, Ivica Ico; Sardana, Disha; Joo, Woohun (ACM, 2020-07)With the proliferation of venues equipped with the high den- sity loudspeaker arrays there is a growing interest in developing new interfaces for spatial musical expression (NISME). Of particular interest are interfaces that focus on the emancipation of the spatial domain as the primary dimension for musical expression. Here we present Monet NISME that leverages multitouch pressure-sensitive surface and the D⁴ library’s spatial mask and thereby allows for a unique approach to interactive spatialization. Further, we present a study with 22 participants designed to assess its usefulness and compare it to the Locus, a NISME introduced in 2019 as part of a localization study which is built on the same design principles of using natural gestural interaction with the spatial content. Lastly, we briefly discuss the utilization of both NISMEs in two artistic performances and propose a set of guidelines for further exploration in the NISME domain.
- NIMEhub: Toward a Repository for Sharing and Archiving Instrument DesignsMcPherson, Andrew P.; Berdahl, Edgar; Lyons, Michael J.; Jensensius, Alexander Refsum; Bukvic, Ivica Ico; Knudson, Arve (ACM, 2016-07)This workshop will explore the potential creation of a community database of digital musical instrument (DMI) designs. In other research communities, reproducible research practices are common, including open-source software, open datasets, established evaluation methods and community standards for research practice. NIME could benefit from similar practices, both to share ideas amongst geographically distant researchers and to maintain instrument designs after their first performances. However, the needs of NIME are different from other communities on account of NIME's reliance on custom hardware designs and the interdependence of technology and arts practice. This half-day workshop will promote a community discussion of the potential benefits and challenges of a DMI repository and plan concrete steps toward its implementation.
- OPERAcraft: Blurring the Lines between Real and VirtualBukvic, Ivica Ico; Cahoon, Cody; Wyatt, Ariana; Cowden, Tracy; Dredger, Katie (University of Michigan, 2014-09)In the following paper we present an innovative approach to coupling gaming, telematics, machinima, and opera to produce a hybrid performance art form and an arts+technology education platform. To achieve this, we leverage a custom Minecraft video game and sandbox mod and pd-l2ork real-time digital signal processing environment. The result is a malleable telematic-ready platform capable of supporting a broad array of artistic forms beyond its original intent, including theatre, cinema, as well as machinima and other experimental genres.
- Reimagining Human Capacity For Location-Aware Aural Pattern Recognition: A Case For Immersive Exocentric SonificationBukvic, Ivica Ico; Earle, Gregory D. (Georgia Institute of Technology, 2018-06)The following paper presents a cross-disciplinary snapshot of 21st century research in sonification and leverages the review to identify a new immersive exocentric approach to studying human capacity to perceive spatial aural cues. The paper further defines immersive exocentric sonification, highlights its unique affordances, and presents an argument for its potential to fundamentally change the way we understand and study the human capacity for location-aware audio pattern recognition. Finally, the paper describes an example of an externally funded research project that aims to tackle this newfound research whitespace.
- Studies In Spatial Aural Perception: Establishing Foundations For Immersive SonificationBukvic, Ivica Ico; Earle, Gregory D.; Sardana, Disha; Joo, Woohun (Georgia Institute of Technology, 2019-06)The Spatial Audio Data Immersive Experience (SADIE) project aims to identify new foundational relationships pertaining to human spatial aural perception, and to validate existing relationships. Our infrastructure consists of an intuitive interaction interface, an immersive exocentric sonification environment, and a layer-based amplitude-panning algorithm. Here we highlight the system’s unique capabilities and provide findings from an initial externally funded study that focuses on the assessment of human aural spatial perception capacity. When compared to the existing body of literature focusing on egocentric spatial perception, our data show that an immersive exocentric environment enhances spatial perception, and that the physical implementation using high density loudspeaker arrays enables significantly improved spatial perception accuracy relative to the egocentric and virtual binaural approaches. The preliminary observations suggest that human spatial aural perception capacity in real-world-like immersive exocentric environments that allow for head and body movement is significantly greater than in egocentric scenarios where head and body movement is restricted. Therefore, in the design of immersive auditory displays, the use of immersive exocentric environments is advised. Further, our data identify a significant gap between physical and virtual human spatial aural perception accuracy, which suggests that further development of virtual aural immersion may be necessary before such an approach may be seen as a viable alternative.
- Tai Chi for Children: Developing a Healthy Mind and Body Instructional PlanBukvic, Ivica Ico (Institute for Creativity, Arts, and Technology: Center for the Arts, 2012)