VTechWorks Administration
Permanent URI for this community
Browse
Browsing VTechWorks Administration by Author "Abaid, Nicole"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)Cienfuegos, Paola Jaramillo; Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander (PLOS, 2017-03-08)Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection.
- Collaborative Multi-Robot Multi-Human Teams in Search and RescueWilliams, Ryan K.; Abaid, Nicole; McClure, James; Lau, Nathan; Heintzman, Larkin; Hashimoto, Amanda; Wang, Tianzi; Patnayak, Chinmaya; Kumar, Akshay (2022-04-30)Robots such as unmanned aerial vehicles (UAVs) deployed for search and rescue (SAR) can explore areas where human searchers cannot easily go and gather information on scales that can transform SAR strategy. Multi-UAV teams therefore have the potential to transform SAR by augmenting the capabilities of human teams and providing information that would otherwise be inaccessible. Our research aims to develop new theory and technologies for field deploying autonomous UAVs and managing multi-UAV teams working in concert with multi-human teams for SAR. Specifically, in this paper we summarize our work in progress towards these goals, including: (1) a multi-UAV search path planner that adapts to human behavior; (2) an in-field distributed computing prototype that supports multi-UAV computation and communication; (3) behavioral modeling that yields spatially localized predictions of lost person location; and (4) an interface between human searchers and UAVs that facilitates human-UAV interaction over a wide range of autonomy.
- Combining Active and Passive Acoustic Sensing in Teams of Mobile RobotsBradley, Aidan J.; Abaid, Nicole (2024-10-29)Evidence suggests that bats are able to take advantage of both their own echolocation signals (active sensing) and the signals of conspecifics in their environment (passive sensing). This work follows a bioinspired approach to investigate whether we can enable robots to do the same. We have simulated a pair of vehicles that acoustically sense their environment both actively and passively. Our results show that, while the ability to fuse acoustic sensing techniques may not provide a significant improvement over active sensing alone, it is rarely worse and often allows for more information about the environment to be observed.
- The Effect of Binaural Beats on Visuospatial Working Memory and Cortical ConnectivityBeauchene, Christine; Abaid, Nicole; Moran, Rosalyn J.; Diana, Rachel A.; Leonessa, Alexander (PLOS, 2016-11-28)Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task.
- On fusing active and passive acoustic sensing for simultaneous localization and mappingBradley, Aidan J.; Abaid, Nicole (2024)Studies on the social behaviors of bats show that they have the ability to eavesdrop on the signals emitted by conspecifics in their vicinity. They can fuse this “passive” data with actively collected data from their own signals to get more information about their environment, allowing them to fly and hunt more efficiently and to avoid or cause jamming when competing for prey. Acoustic sensors are capable of similar feats but are generally used in only an active or passive capacity at one time. Is there a benefit to using both active and passive sensing simultaneously in the same array? In this work we define a family of models for active, passive, and fused sensing systems to measure range and bearing data from an environment defined by point-based landmarks. These measurements are used to solve the problem of simultaneous localization and mapping (SLAM) with extended Kalman filter (EKF) and FastSLAM 2.0 approaches. Our results show agreement with previous findings. Specifically, when active sensing is limited to a narrow angular range, fused sensing can perform just as accurately if not better, while also allowing the sensor to perceive more of the surrounding environment.
- Reverse social contagion as a mechanism for regulating mass behaviors in highly integrated social systemsPorfiri, Maurizio; De Lellis, Pietro; Aung, Eighdi; Meneses, Santiago; Abaid, Nicole; Waters, Jane S.; Garnier, Simon (Oxford University Press, 2024-06-26)Mass behavior is the rapid adoption of similar conduct by all group members, with potentially catastrophic outcomes such as mass panic. Yet, these negative consequences are rare in integrated social systems such as social insect colonies, thanks to mechanisms of social regulation. Here, we test the hypothesis that behavioral deactivation between active individuals is a powerful social regulator that reduces energetic spending in groups. Borrowing from scaling theories for human settlements and using behavioral data on harvester ants, we derive ties between the hypermetric scaling of the interaction network and the hypometric scaling of activity levels, both relative to the colony size. We use elements of economics theory and metabolic measurements collected with the behavioral data to link activity and metabolic scalings with group size. Our results support the idea that metabolic scaling across social systems is the product of different balances between their social regulation mechanisms.