Scholarly Works, Center for Coastal Studies
Permanent URI for this collection
Browse
Browsing Scholarly Works, Center for Coastal Studies by Author "Bhide, Shantanu V."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Addressing the Contribution of Indirect Potable Reuse to Inland Freshwater SalinizationBhide, Shantanu V.; Grant, Stanley B.; Parker, Emily A.; Rippy, Megan A.; Godrej, Adil N.; Kaushal, Sujay S.; Prelewicz, Gregory; Saji, Niffy; Curtis, Shannon; Vikesland, Peter J.; Maile-Moskowitz, Ayella; Edwards, Marc A.; Lopez, Kathryn; Birkland, Thomas A.; Schenk, Todd (2021-02-02)Inland freshwater salinity is rising worldwide, a phenomenon called the freshwater salinization syndrome (FSS). We investigate a potential conflict between managing the FSS and indirect potable reuse, the practice of augmenting water supplies through the addition of reclaimed wastewater to surface waters and groundwaters. From time-series data collected over 25 years, we quantify the contributions of three salinity sources—a wastewater reclamation facility and two rapidly urbanizing watersheds—to the rising concentration of sodium (a major ion associated with the FSS) in a regionally important drinking water reservoir in the Mid-Atlantic United States. Sodium mass loading to the reservoir is primarily from watershed runoff during wet weather and reclaimed wastewater during dry weather. Across all timescales evaluated, sodium concentration in the reclaimed wastewater is higher than in outflow from the two watersheds. Sodium in reclaimed wastewater originates from chemicals added during wastewater treatment, industrial and commercial discharges, human excretion, and down-drain disposal of drinking water and sodium-rich household products. Thus, numerous opportunities exist to reduce the contribution of indirect potable reuse to sodium pollution at this site, and the FSS more generally. These efforts will require deliberative engagement with a diverse community of watershed stakeholders and careful consideration of the local political, social, and environmental context.
- The anthropogenic salt cycleKaushal, Sujay S.; Likens, Gene E.; Mayer, Paul M.; Shatkay, Ruth R.; Shelton, Sydney A.; Grant, Stanley B.; Utz, Ryan M.; Yaculak, Alexis M.; Maas, Carly M.; Reimer, Jenna E.; Bhide, Shantanu V.; Malin, Joseph T.; Rippy, Megan A. (SpringerNature, 2023-10-31)Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems.
- Freshwater salinization syndrome limits management efforts to improve water qualityMaas, Carly M.; Kaushal, Sujay S.; Rippy, Megan A.; Mayer, Paul M.; Grant, Stanley B.; Shatkay, Ruth R.; Malin, Joseph T.; Bhide, Shantanu V.; Vikesland, Peter J.; Krauss, Lauren; Reimer, Jenna E.; Yaculak, Alexis M. (Frontiers, 2023-09-22)Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed “chemical cocktails”, in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e., permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g., Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.
- Longitudinal stream synoptic monitoring tracks chemicals along watershed continuums: a typology of trendsKaushal, Sujay S.; Maas, Carly M.; Mayer, Paul M.; Newcomer-Johnson, Tammy A.; Grant, Stanley B.; Rippy, Megan A.; Shatkay, Ruth R.; Leathers, Jonathan; Gold, Arthur J.; Smith, Cassandra; McMullen, Evan C.; Haq, Shahan; Smith, Rose; Duan, Shuiwang; Malin, Joseph; Yaculak, Alexis; Reimer, Jenna E.; Newcomb, Katie Delaney; Raley, Ashley Sides; Collison, Daniel C.; Galella, Joseph G.; Grese, Melissa; Sivirichi, Gwendolyn; Doody, Thomas R.; Vikesland, Peter J.; Bhide, Shantanu V.; Krauss, Lauren; Daugherty, Madeline; Stavrou, Christina; Etheredge, MaKayla; Ziegler, Jillian; Kirschnick, Andrew; England, William; Belt, Kenneth T. (Frontiers, 2023-06-09)There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km2 of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions.