Marion duPont Scott Equine Medical Center
Permanent URI for this community
Browse
Browsing Marion duPont Scott Equine Medical Center by Author "Barrett, Jennifer G."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Comparison of equine tendon-, muscle-, and bone marrow–derived cells cultured on tendon matrixStewart, Allison A.; Barrett, Jennifer G.; Byron, Christopher R.; Yates, Angela C.; Durgam, Sushmitha S.; Evans, Richard B.; Stewart, Matthew C. (AVMA, 2009-06)Objective—To compare viability and biosynthetic capacities of cells isolated from equine tendon, muscle, and bone marrow grown on autogenous tendon matrix.
- Engineering Tendon: Scaffolds, Bioreactors, and Models of RegenerationYoungstrom, Daniel W.; Barrett, Jennifer G. (Hindawi, 2016)Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.
- The Potential of Mesenchymal Stem Cells to Treat Systemic Inflammation in HorsesMacDonald, Elizabeth S.; Barrett, Jennifer G. (Frontiers Media, 2020-01-21)One hallmark of mesenchymal stem cells (MSCs) is the ability to differentiate into multiple tissue types which assists in tissue regeneration. Another hallmark of MSCs is their potent anti-inflammatory and immunomodulatory properties and the potential to treat inflammatory, immune-mediated, and ischemic conditions. In equine practice, MSCs have shown efficacy in the treatment of musculoskeletal disorders such as tendinopathy, meniscal tears and cartilage injury. However, there are many equine disease processes and conditions that may benefit from the immunomodulatory properties of MSCs. Examples include conditions associated with overwhelming acute inflammatory response such as systemic inflammatory response syndrome to chronic diseases characterized by a prolonged low level of inflammation such as equine asthma and recurrent uveitis. For the acute inflammatory response processes, there is often high morbidity and mortality with no effective immunomodulatory treatment to prevent the overwhelming synthesis of proinflammatory mediators. For chronic inflammatory disease processes, frequently long-term corticosteroid treatment is the therapeutic mainstay, with serious potential complications. Thus, there is an unmet need for alternative anti-inflammatory treatments for both acute and chronic illnesses in horses. While MSCs show promise for such conditions, much research is needed before a clinically safe and effective treatment will be available. Optimal MSC tissue source, patient vs. donor source (autologous vs. allogeneic) and cell growth conditions need to be determined for each problem. For immediate use, allogeneic MSC treatments is preferable, but immune tolerance and adequate safety require further study. MSC collection and cryopreservation from horses before they are injured or ill, whether from umbilical cord tissue, bone marrow or adipose might become more widespread. Once these fundamental approaches to treating specific diseases with MSCs are determined, the route of administration, dose and timing of administration also need to be studied. To provide a framework for development of MSC immunomodulatory treatments, this article reviews the current understanding of equine MSC anti-inflammatory and immunomodulatory properties and proposes how MSC therapy may be further developed to treat acute onset systemic inflammatory processes and chronic inflammatory diseases.
- The Use of Adipose-Derived Progenitor Cells and Platelet-Rich Plasma Combination for the Treatment of Supraspinatus Tendinopathy in 55 Dogs: A Retrospective StudyCanapp, Sherman O., Jr.; Canapp, Debra A.; Ibrahim, Victor; Carr, Brittany Jean; Cox, Catherine; Barrett, Jennifer G. (Frontiers, 2016-09-09)Objective: To report clinical findings and outcomes for 55 dogs with supraspinatus tendinopathy (ST) treated with adipose-derived progenitor cells and platelet-rich plasma (ADPC-PRP) therapy. Methods: Medical records of client-owned dogs diagnosed with ST that were treated with ADPC-PRP combination therapy were reviewed from 2006 to 2013. Data collected included signalment, medical history, limb involvement, prior treatments, physical and orthopedic examination, objective temporospatial gait analysis findings, diagnostic imaging results (radiography, magnetic resonance imaging, musculoskeletal ultrasonography), arthroscopy findings, and outcome. Results: Following ultrasound-guided injection of ADPC-PRP, objective gait analysis was available on 25 of the 55 dogs at 90 days post ADPC-PRP therapy. Following treatment, a significant increase in total pressure index percentage (TPI%) was noted in the injured (treated) forelimb at 90 days post treatment (p = 0.036). At 90 days following treatment, 88% of cases had no significant difference in TPI% of the injured limb to the contralateral limb. The remaining 12% of cases had significantly improved (p = 0.036). Bilateral shoulder diagnostic musculoskeletal ultrasound revealed a significant reduction in tendon size (CSA) in the treated tendon at 90 days following treatment when compared to the initial CSA (p = 0.005). All cases showed significant improvement in fiber pattern of the affected supraspinatus tendon by the ultrasound shoulder pathology rating scale.